

Luis Eduardo
Vieira
Brazilian National Institute for Space Research
Alisson Dal Lago, INPE
Ana Paula Rabello, INPE
Antônio Lopes, INPE
Arcelio Louro, INPE
Braulio Albuquerque, INPE
Douglas Silva, INPE
Edson Miranda, INPE
Fabiano Sousa, INPE
Fatima Matiello, INPE
Felipe Tavares, INPE
Fernando Guarnieri, INPE
Flavia Reis Cardoso Rojas, USP
Franciele Carlesso, INPE
Gino Genaro, INPE
Graziela da Silva Savonov, INPE
Jenny Marcela Rodriguez, INPE
João Paulo Souza, INPE
Joaquim Costa, INPE/EMBRACE
Jognes Panasiewicz, INPE
José Cecatto, INPE
Ligia Alves da Silva, INPE/EMBRACE
Livia Ribeiro Alves, INPE
Lucas Costa, INPE
Luis Eduardo Antunes Vieira, INPE
Luiz Angélo Berni, INPE
Marcelo Sampaio, INPE
Maria José Barbosa, INPE
Mario Eugênio Saturno, INPE
Marlos Rochenbach, INPE
Mateus Aguiar, INPE
Miguel Carretero, INPE
Odim Mendes Jr., INPE
Paulo Jauer, INPE
Renato Branco, INPE
Renato Dallaqua, INPE
Ricardo Toshiyuki Irita, INPE
Ronan Chagas, INPE
Sebastião Varotto, INPE
Sergio Andrade, INPE
Tardelli Stekel, INPE
Valentino Lau, INPE
Victor Moura, INPE
Waldeir Amaral Vilela, INPE
Willer Gomes, ITA

Oral

Here we present the concept feasibility study of the Galileo Solar Space Telescope Mission (GSST Mission) proposed by the Heliophysics, Planetary Sciences, and Aeronomy Division (DIPHA) of the Brazilian National Institute for Space Research (INPE). The study was conducted at the Space Missions Integrated Design Center (CPRIME - Centro de Projeto Integrado de Missões Espaciais) of INPE's Space System Division (DIDSE). The GSST shall contribute to the understanding of the evolution of the magnetic structure in the outer layers of the Sun and its influence on the Earth's space environment. The scientific observations requirements proposed for the mission include high spatial and temporal resolution observations. Those measurements involve observations of the magnetic structure of the photosphere and outer layers of the solar atmosphere through the solar cycle, observations of the variability of the total solar irradiance, and in situ observations of magnetic field and high energy particle fluxes within the Earth's magnetosphere. The concept feasibility study, which was carried out during the second half of 2017, included: (a) the definition of the scientific objectives, requirements, and restrictions of the mission; (b) the identification of the system drivers; (c) the definition of the candidate solutions for the system; (d) the conceptual design of the mission's architecture components, including the optical payloads; (e) the pointing accuracy analysis of the designed attitude control subsystem; (f) the simulation and verification of the mission operational concept; (g) the assessment of the ground segment required to fulfill the mission; (h) estimate of the schedule for the development of the mission; and (i) the risk analysis. The optical payload architecture, orbit, and ground segment were identified as the main system drivers. The concept of two full disk telescopes and one high-resolution telescope for visible and ultraviolet spectropolarimetric observations have been the basis for the solution of the optical payload architecture selected for scientific purposes. For optimizing the solar visibility and the data downlink, the study has considered two orbits as possible: a sun-synchronous Low Earth Orbit (LEO), and a Geosynchronous Orbit (GEO). Each solution implies an exclusive spacecraft layout development. We point out that the cost analysis is still preliminary due to the lack of a similar mission in INPE's portfolio. Finally, the limitations of the concept and future strategies to implement such a mission in a challenging funding environment as the current Brazilian scenario shall be addressed.

[Download to PDF](#)