

Harry
Greatorex
Queen's University Belfast
Ryan Milligan, Queen's University Belfast
Phillip Chamberlin, Laboratory for Atmospheric and Space Plasma
Poster

The chromospheric Lyman-alpha line of neutral hydrogen (Ly? α ; 1216 Å) is the most intense emission line in the solar spectrum and is believed to constitute a considerable portion of the total radiated energy in solar flares. Here, we present a multi-wavelength study of three M3 flares that were simultaneously observed by RHESSI, GOES, and SDO. Despite having identical X-ray magnitudes these flares show significantly different Ly? α responses. The peak Ly? α enhancements above quiescent background for these flares were 1.5 %, 3.3 %, and 6.4 %. However, the predicted Ly? α enhancements from FISM2 were consistently <2 %. Examining the properties of the nonthermal electrons derived from spectral analysis of HXR observations, an association was found between Ly? α and the peak irradiance enhancements in Ly? α . Finally, the percentage of nonthermal energy radiated in the Ly? α line during the impulsive phase was found to range from 1–5 %. Comparatively, the radiative losses in He II (304 Å) were found to range from 0.4–0.9 %. These results may have significant implications for space weather studies and atmospheric modelling, and will influence the interpretation of flare-related Ly? α observations in Solar Cycle 25.

Poster PDF
[Greatorex-Harry.pdf](#)

Poster category:

Poster category
Solar and Interplanetary Research and Applications
Meeting homepage
[Space Weather Workshop 2023](#)
[Download to PDF](#)