

Espen
Fredrick

University of Texas at Arlington

Ramon Lopez, University of Texas at Arlington

Poster

Global models of the geospace environment, including those used in the prediction of space weather phenomena, rely on a set of upstream solar wind conditions outside the bow shock to drive the model. Generally, these data are provided by the OMNI dataset, a set of observations of the solar wind typically collected near the L1 Lagrange point and ballistically propagated to Earth's bow shock nose. The actual solar wind conditions outside the bow shock may differ from the OMNI data, leading to erroneous model inputs. Erroneous model inputs will lead to erroneous model outputs, hence erroneous predictions of space weather phenomena. Interplanetary Coronal Mass Ejections (ICMEs) are the drivers of the strongest magnetic storms. In this case study, we examine the accuracy of the OMNI data in representing ICMEs near Earth. This presentation will include examples of global magnetosphere simulations driven with the OMNI data and data near Earth to illustrate potential uncertainties in global simulation output during ICME events.

Poster category:

Poster category

Solar and Interplanetary Research and Applications

Poster session day

Tuesday, April 16, 2024

Poster location

22

Meeting homepage

[Space Weather Workshop 2024](#)

[Download to PDF](#)