Investigating CO2 space-time variability in satellite - chemistry transport model differences using aircraft measurements

Chiranjit

Das

Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India

Naveen Chandra[1], Ravi Kumar Kunchala [2], Prabir K. Patra [1,3,*]

- 1. Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama 236-0001, Japan
- 2. Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
- 3. Research Institute for Humanity and Nature (RIHN), Kyoto 6038047, Japan
- * Presenting author (prabir@jamstec.go.jp)

Poster

Orbiting Carbon Observatory-2 (OCO-2) is providing global spatiotemporal distribution of column average dry-air mole fraction of CO2 (XCO2) at finer spatial resolution and covering the globe compared to the high precision surface network and aircraft measurements. This information offers a unique opportunity to the carbon cycle community to utilize satellite retrievals for policy-relevant source and sink estimations through top-down inversion. This study extensively examines CO2 variability from OCO-2 retrieval, aircraft measurements (Atmospheric Tomography Mission; ATom and Amazon aircraft program), and their representation in the MIROC4-ACTM chemistry transport model, aiming to understand CO2 difference (model-observation) across measurement platforms, tropospheric layers and regions.

Our results demonstrate the largest mismatch variability of aircraft (\sim -0.01 \pm 0.4 ppm) and OCO-2 (\sim -0.34 \pm 1 ppm) against ACTM over land in North America and Amazon sites (SAN, ALF, RBA, TEF) likely due to uncertainty in prior land CO2 flux constrained at lower troposphere (lowest level- 2 km). Additionally, best match of aircraft and OCO-2 against ACTM (mismatch less than -0.04 \pm 0.3 ppm; ATom and -0.27 \pm 0.4 ppm; OCO-2) is observed over background remote troposphere in Pacific and Atlantic regions. However, in southern ocean ATom measurements showed better concurrency with ACTM (mismatch \sim 0.06 \pm 0.15 ppm) as compared to OCO-2 XCO2 (mismatch \sim -0.06 \pm 0.7 ppm). In all the regions, we observe that the

aircraft tropospheric column (lowest level-8 km) and OCO-2 XCO2 pattern matches well with ACTM, but there is more systematic bias in OCO-2 as compared to aircraft in ACTM.

Poster PDF

das-chiranjit-poster.pdf

Meeting homepage

IWGGMS-20 Workshop

Download to PDF