

Jean-Luc
Attié

LAERO-Laboratoire d'Aérologie, Université de Toulouse, UMR CNRS 5560, France

Philippe Ricaud, CNRM, Météo-France, CNRS, Université de Toulouse, UMR CNRS 3589, France

Naoko Saito, Center for Environmental Remote Sensing, Chiba University, Japan

Prabir Patra, Center for Environmental Remote Sensing, Chiba University, Japan; Research Institute for Global Change, JAMSTEC, Yokohama, 236-0001, Japan

Isabelle Pison, Laboratoire des Sciences du Climat et de l'Environnement, CNRS UMR 1572, Gif-sur-Yvette, France

Adrien Martinez, Laboratoire des Sciences du Climat et de l'Environnement, CNRS UMR 1572, Gif-sur-Yvette, France

Rémi Chalinel, WaltR-Parc Technologique du Canal, Ramonville Saint Agne, France

Béatrice Josse, CNRM, Météo-France, CNRS, Université de Toulouse, UMR CNRS 3589, France

Didier Hauglustaine, Laboratoire des Sciences du Climat et de l'Environnement, CNRS UMR 1572, Gif-sur-Yvette, France

Poster

Nitrous oxide (N₂O), with a lifetime of ~120 years, is the third most important greenhouse gas after carbon dioxide (CO₂) and methane (CH₄) contributing to global warming. It has a global warming potential 300 times greater than CO₂ on the 100-year horizon. N₂O emissions are not regulated by the Montreal Protocol and, although subject to the Kyoto Protocol, the ~0.25%/year increase in N₂O observed over the last 10 years is expected to continue until 2100. N₂O emissions involve both biotic (living organisms) and abiotic (environmentally induced e.g. water, soil, air) processes and are: 1) 60% natural, and 2) 40% anthropogenic. The annual average of N₂O in the atmosphere is about 332 ppb (for the year 2019).

Despite its importance, tropospheric N₂O measurements and surface emissions/sources remain understudied globally, with limited surface observations. However, sparse FTIR/NDACC instruments monitor N₂O profiles and satellite observations performed in the thermal infrared (TIR) from IASI (Ricaud et al., 2009; Chalinel et al., 2022), AIRS and GOSAT (Kangah et al. 2017) provide valuable global data. GOSAT-2/TANSO-FTS-2, with some sensitivity to lower tropospheric N₂O, offers potential studies on surface emissions using inversion methods.

This study evaluates the quality of GOSAT-2/TANSO-FTS-2 N₂O observations for 2019. Comparisons with ground-based observations, IASI (Chalinel et al., 2022), NDACC N₂O profiles and chemical transport models will assess the reliability of GOSAT-2 measurements at different atmospheric levels. The study includes discussion of measurement sensitivities, evaluation results, and potential for inverting N₂O surface fluxes.

References:

Chalinel, R., et al., Global-scale observation and evaluation of nitrous oxide from IASI on MetOp-A, *Remote Sens.*, 2022, doi : 10.3390/rs14061403

Kangah, Y., et al., Summertime upper tropospheric nitrous oxide over the Mediterranean as a footprint of Asian emissions, *J. Geophys. Res. Atmos.*, 122, doi:10.1002/2016JD026119, 2017.

Ricaud, P., et al., Equatorial total column of nitrous oxide as measured by IASI on MetOp-A: Implications for transport processes, *Atmos. Chem. Phys.*, 9, 3947-3956, 2009.

Poster PDF

[attie-poster.pdf](#)

Meeting homepage

[IWGGMS-20 Workshop](#)

[Download to PDF](#)