

Sebastien

Roche

Environmental Defense Fund, Washington, D.C., USA

Christopher Chan Miller, Environmental Defense Fund, Washington, D.C., USA

Amir Souri, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA

Jonas Wilzewski, EUMETSAT, Eumetsat Allee 1, 64295 Darmstadt, Germany

Bingkun Luo, Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA

Jenna Samra, Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA

Maryann Sargent, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

Jonathan Franklin, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

Kang Sun, Research and Education in Energy, Environment and Water Institute, University at Buffalo, Buffalo, NY, USA

Kelly Chance, Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA

Xiong Liu, Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA

Steven Wofsy, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

Poster

The area-mapping MethaneSAT satellite will aim to estimate CH₄ oil & gas emissions over regions that account for 80% of O&G production. It will use one spectrometer to retrieve CH₄ from a window centered at 1.66 μ m, and CO₂ from a window centered at 1.61 μ m, and a second spectrometer to retrieve surface pressure from the O₂ 1? band at 1.27 μ m. MethaneAIR is the airborne simulator for the MethaneSAT satellite, its observations are used to test the retrieval algorithms that will be used to process MethaneSAT spectra, but also to obtain emissions estimates from oil & gas basins in the United States.

MethaneAIR flew over 3 different campaigns in 2019 and 2021 (MAIR), 2022 (MAIR-E), and 2023 (MAIR-X). MethaneAIR first campaign took place in 2019 and 2021 with 10 research flights. The aircraft typically flies at ~12-14 km altitude and observed spectra are thus unaffected by the airglow emission from excited oxygen molecules between ~ 25-75 km. During the last MethaneAIR flight (RF10) the spectrometer was looking upwards to record airglow emission spectra.

Operational retrievals for MethaneSAT will use “proxy” retrievals instead of “full physics” retrievals. A “proxy” retrieval does not include the effect of aerosols on the light path in the forward model, it instead uses the column of another gas retrieved from a band spectrally close to the target gas as proxy for the aerosol-induced light path changes, assuming that they are similar in the two neighboring spectral regions.

Typically, CO₂ has been used as the proxy species for XCH₄, but the variability in the modelled XCO₂ can introduce biases, especially over targets with sources of both CH₄ and CO₂. We are considering the use of the O₂ column from the O₂ 1? band to derive proxy XCH₄ and XCO₂. XCO₂ (~0.2095) is much less variable than XCO₂. However, the O₂ window is more spectrally distant from the CH₄ window than the CO₂ window, making the O₂ proxy more sensitive to aerosols. MethaneSAT observations in the O₂ window will also be affected by airglow. Airglow will affect the surface pressure retrieval from MethaneSAT O₂ window and will need to be accounted for to improve the use of the O₂ column as a proxy species.

We used airglow profiles retrieved from SCIAMACHY limb observations (Sun et al., 2022) to develop a parametrization for obtaining a priori airglow profiles. We will present full physics retrieval results performed with MethaneAIR RF10 measurements and results from MethaneSAT retrievals on synthetic spectra to estimate the effect of airglow on retrieved XCH₄ and XCO₂ using the O₂ proxy method.

Sun, Kang, 2022, "Level 2 data for SCIAMACHY airglow retrieval in 2010",
<https://doi.org/10.7910/DVN/T1WRWQ>, Harvard Dataverse, V1

Poster PDF

[roche-sebastien-poster.pdf](#)

Meeting homepage

[IWGGMS-20 Workshop](#)

[Download to PDF](#)