

Gretchen
Keppel-Aleks
University of Michigan
Scott Doney, University of Virginia
Yifan Guan, University of Michigan
Galen McKinley, Columbia University
Amanda Fay, Columbia University

Oral

Ocean pCO₂ observations suggest dynamic ocean carbon cycling, driven both by climate trends and internal variability. Here, we assess whether the imprint of seasonal and interannually varying ocean fluxes are detectable in state-of-the-art OCO-2 space based observations. With a near-global coverage, this dataset provides a first opportunity to directly observe seasonality and IAV in atmospheric CO₂ over remote ocean regions. We assess the impact of ocean fluxes on the OCO-2 record using atmospheric transport simulations with underlying gridded air-sea CO₂ fluxes from observation-based products. We use three observation-based products to bracket the likely range of ocean air-sea flux contributions to XCO₂ variability (over both land and ocean) within the GEOS-Chem atmospheric transport model. We find that seasonal cycles due to ocean fluxes are masked by terrestrial fluxes, and the magnitude of seasonal cycles in XCO₂ due to ocean fluxes alone is well within the random noise of OCO-2 observations inferred from a geostatistical variance budget. In terms of interannual variations, we find that the magnitude of XCO₂ IAV generated by the whole ocean is masked by random noise. Furthermore, depending on location and flux product, between 20-80% of the IAV in the simulations is caused by IAV in air-sea CO₂ fluxes, with the remainder due to IAV in atmospheric winds, which modulate the atmospheric gradients that arise from climatological ocean fluxes. The simulation results based on all three flux products show that even within the Northern Hemisphere atmosphere, Southern Hemisphere ocean fluxes are the dominant source of variability in XCO₂. Our results show that the small magnitude of the air-sea flux impacts on XCO₂ presents a substantial challenge for detection of ocean- driven IAV from OCO-2, with implications for future CO₂-observing missions.

Meeting homepage
[IWGGMS-20 Workshop](#)
[Download to PDF](#)