

Wesley

Taylor

Millersville University of Pennsylvania

Dr. Gregory Blumberg, Millersville University of Pennsylvania

Dr. Eleanor Casas, Millersville University of Pennsylvania

Dr. Chuck Ward, Millersville University of Pennsylvania

Poster

The August 21, 2017, total solar eclipse offered a unique opportunity to study planetary boundary layer impacts from a solar eclipse. In Turner et al. 2018, which utilized LiDAR, flux tower, and radiosonde measurements from the Atmospheric Radiation Measurement Southern Great Plains (ARM-SGP) site. Significant effects of the eclipse were observed on the planetary boundary layer (PBL) not only at the surface but also aloft in a region of roughly 89% eclipse coverage across three coordinated sites. Taking radiosonde data from Lamont, OK at 2329 UTC 8/16/2017 as the initial conditions, runs of the Weather Research and Forecasting single column model were conducted using the Yonsei University PBL parameterization scheme. These runs were conducted with and without eclipse Besselian elements being applied to the model shortwave radiation physics to study PBL evolution. Our simulations reproduce some of the Turner et al. 2018 observations, particularly the collapse in the PBL depth reminiscent of the evening transition and the development of an eclipse-generated low level jet approximately 300 meters above the surface. The simulation appears to indicate that single column models can reproduce PBL evolution even in the rare case of a solar eclipse.

Poster category:

Poster category

Solar and Interplanetary Research and Applications

Meeting homepage

[Space Weather Workshop 2025](#)

[Download to PDF](#)