

Kiran

Jain

National Solar Observatory, Boulder, USA

Mitchell Creelman, National Solar Observatory, Boulder, USA

Amr Hamada, National Solar Observatory, Boulder, USA

Niles Oien, National Solar Observatory, Boulder, USA

Alexei Pevtsov, National Solar Observatory, Boulder, USA

Sushanta C. Tripathy, National Solar Observatory, Boulder, USA

Thomas M. Wentzel, National Solar Observatory, Boulder, USA

Poster

National Science Foundation's Global Oscillations Network Group (GONG) has been providing helioseismic maps of medium-to-large active regions of the far (invisible from Earth) hemisphere for about two decades. These maps have proven their capability as an important space weather forecasting tool by providing information about the arrival of active regions that were either born on the far side or continued to survive after crossing the west limb about two weeks ago. For example, the models based on observations of the hemisphere facing the Earth, and the lack of information from the far hemisphere introduce severe gaps in the data stream with consequent errors in their forecasts. In recent years, several studies have shown that the inclusion of far side active regions, particularly near limbs, can significantly refine the model predictions by improving estimates of the global magnetic flux distribution. Here we present revamped GONG far side helioseismic maps with better detection near limbs and improved signal-to noise in a more user-friendly format than the previous versions.

This work is partially supported by the NSF' Windows of the Universe grant to the National Solar Observatory and NASA grant 80NSSC22K0778.

Poster category:

Poster category

Solar and Interplanetary Research and Applications

Meeting homepage

[Space Weather Workshop 2025](#)

[Download to PDF](#)