

Jean-Michel

Lemoine

Université de Toulouse, GET (CNES/CNRS/IRD/UT), Toulouse, France

Alexandre Couhert Université de Toulouse, GET (CNES/CNRS/IRD/UT), Toulouse, France

Sean Bruinsma Université de Toulouse, GET (CNES/CNRS/IRD/UT), Toulouse, France

Pascal Gégout Université de Toulouse, GET (CNES/CNRS/IRD/UT), Toulouse, France

Alejandro Blazquez Université de Toulouse, LEGOS (CNES/CNRS/IRD/UT), Toulouse, France

Alexandre Boughanemi Magellum, 1 Rue Ariane, 31520 Ramonville-Saint-Agne, France

Eric Pellereau Magellum, 1 Rue Ariane, 31520 Ramonville-Saint-Agne, France

Julia Pfeffer Magellum, 1 Rue Ariane, 31520 Ramonville-Saint-Agne, France

Oral

In the first part of this presentation, recent results obtained from level 3 and 4 products, calculated at LEGOS from GRACE(-FO) data, will be presented. They allows for an estimation of the total water content of watersheds. The GRACE(-FO) ensemble L3 product is now fully available within the specific archives of Hydroweb.next (hydrology) and Odatis websites (barystatic and manometric). This availability helps multiple users to develop new uses like a combination with satellite rain products in early warning for African lakes or the combination with altimetry sea level and Argo steric sea level to characterize ocean heat content. An application to the case of Lake Tanganyika will be presented.

The second part of the presentation will report on the preparations made for the imminent start of a sixth iteration at CNES of the processing of the GRACE/GRACE-FO dataset. This new release will include, in particular:

- Re-estimation of the optimal dynamic parameterization for processing the GRACE/GRACE-FO data
- Use of the new LEGOS FES2022 ocean tide model
- Use of an updated 3-D atmosphere model computed at GET using ECMWF data for the atmospheric dealiasing part
- Use of the LEGOS TUGO model for the ocean dealiasing part, forced by the same atmospheric model as that used for the atmospheric part.

The performance of these new dealiasing models, in terms of velocity residuals and gravity field solutions, will be compared with that of the AOD1B models available at GFZ.

Meeting homepage

[GRACE-FO 2025 Science Team Meeting](#)

[Download to PDF](#)