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1. Data and Model
= Swarm, RIO, MAVEN, and WACCM-X

2. High-Speed Streams during WHPI Campaign
= Effects on the Terrestrial Ionosphere-Thermosphere
= Possible Impacts on Mars’ Upper Thermosphere

3. Solar Rotation Variation
= Effects on the Whole Martian Thermosphere
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1. Data and Model

Swarm, RIO, MAVEN, and WACCM-X

SUEUUS LG U TSI . \ission launched on 22 November 2013 from the European Space Agency to study the dynamics of the
Earth's magnetic field and its interaction with the Earth’s system

¢ This mission consists of three identical satellites in near-polar low Earth orbits (LEO). The two satellites,
Swarm A and C, fly almost side-by-side at an initial altitude of 460 km while the third Swarm satellite B flies
in a higher orbit of about 530 km

s All the three satellites are equipped with a set of six core instruments. Neutral (total mass) densities are
inferred by measurements taken by the onboard Accelerometer (ACC) and GPS Receiver (GPSR)

**Remote lonospheric
Observatory (RIO)-12 and RIO-15
are low-power GPS receivers
deployed on NOAA’s Tropical
Atmosphere Ocean (TAO) buoys in
the Pacific Ocean near the

** The Whole Atmosphere Community
Climate Model with thermosphere and % Mars Atmosphere and Volatile

geographic equator in Aug. 2018 ionosphere extension (WACCM-X) is a EvolutioN (MAVEN) orbiting
' comprehensive numerical model Mars since 22 Sept 2014
“*Each RIO system consists of a % We employ Specified Dynamics (FXSD) %+ We utilize EUVM irradiances,
GPS receiver and operates simulations with solar/magnetic forcing SWEA electron counts, NGIMS
autonomously by F10.7/Kp and Heelis forcing mass densities
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2a. High Speed Stream during 2018-2019

Swarm-C total mass density analyses

Swarm-C GPS Daily Zonal Mean Density (black)
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2b. High Speed Stream during 2018-2019

RIO TEC analyses (1 of 2)

VTEC RIO 12 (5. 028N 169 990W)
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LT-time contours of vertical TEC (VTEC) measured during 1 September 2018 - 31 August 2019 by RIO-12 and RIO-15. (a')-(b') Same as (a)-(b), but
for WACCM-X near the RIO locations. (c) Daily solar radio flux F10.7 (red line) and 3-hourly ap (blue line). (d) Scatter plot of WACCM-X versus
RIO-12 VTEC (left) and RIO-15 VTEC (right) and their correlation coefficients (r=0.67 for RIO-12 and r=0.72 for RIO-15). Prominent HSS-induced
~9-day periodicities are present during November 2018 — March 2018.
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d. a.
Time Series - RIO 12 - Diurnal Mean Periodogram - RIO 12 - Diurnal Mean
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2b. High Speed Stream during 2018-2019
RIO TEC analyses (2 of 2)
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RIGHT: LT-time contours of 8- to 10-day band-pass-filtered VTEC from RIO-12 (a) and RIO-15 (b) for the 100-day period.
The white line in (a) and (b) shows the time series of the 8-10 day filtered TEC at 14 LT. (c) Time series of F10.7 (red line)
and ap (blue line). The dotted blue line in (c) shows 8- to 10-day band-pass-filtered time series of ap. (d) Time series of
4-day running means of 12-day residuals of RIO-12 (black line) and RIO-15 (magenta line) TEC, and ap (dotted blue
line). Correlation coefficients between RIO-12 (RIO-15) and ap of r=0.71 (r=0.78) are noted in (d).
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2c. High Speed Stream during 2018-2019

Impacts on Mars’ Thermosphere”? MAVEN analyses

MAVEN/SWEA Electron Counts for Energy ~55.2eV P ____Periodogram
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(a) Time series of MAVEN SWEA ~55eV electron counts during December 2018, (a’) periodogram of time series in (a). (b) same as (a) but for
MAVEN NGIMS CO,density near 200 km and (b’) its periodogram. Prominent ~9-day variability is observed in both electron counts at Mars and
NGIMS upper thermosphere density. Are these the effects of the HSS observed at Earth?
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3. Solar Rotation Variation in Mars’ Thermosphere

MAVEN NGIMS and EUVM analyses
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Relative change in flux and density. Panel (a) shows the season
and SZA. Panel (b) shows the flux relative change for all flux
bands. Panels (c) through (e) show the density relative change for
all species as a function of altitude for CO2 (c), N2 (d), and Ar (e).
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Solar Rotation Effects in the Whole Martian
Thermosphere as Revealed by Five Years of MAVEN
Observations

Joseph Hughes'*, Federico Gasperini!, and Jeffrey M. Forbes?!
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Key Points:

+ Large quasi-27-day solar rotation effects are revealed in Mars’ thermosphere den-
sity (125-250 km)

+ Solar rotation effects are strongest at higher altitudes (200-250 km) under solar
high conditions

+ Strongest correlation is found near the sub-solar point with highest sensitivity near
the terminator

Large quasi-27-day solar rotation
effects are revealed in Mars’
thermosphere density (125-250 km)
Solar rotation effects are strongest
at higher altitudes (200-250 km)
under solar high conditions
Strongest correlation is found near
the sub-solar point with highest
sensitivity near the terminator
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Summary and Conclusions

s Thermospheric density near 460 km from the Swarm-C spacecraft, vertical TEC from RIO GPS receivers, and SD/WACCM-X reveal a
significant global ionosphere-thermosphere (IT) response to HSS events occurring during Nov. 2018-Mar. 2019.

= SD/WACCM-X output shows general agreement with observations, with some daily variability not well reproduced.

= Model and observations demonstrate that the maximum response to the HSS events in thermospheric density and
ionospheric TEC persists for several days after the onset of activity and has a global impact - even at low latitudes.

= Analyses of MAVEN SWEA and NGIMS data reveals significant 9-day variability in measured electron counts and upper
thermospheric density during December 2018 at Mars, likely connected to the HSS events observed at Earth.

s Further, solar rotation effects on the whole Martian thermosphere is studied by applying correlation analysis techniques to over
five years of coincident MAVEN NGIMS and EUVM observations. Least squares methods are used to estimate the response of CO,,
Ar, and N, densities to the quasi-27-day solar rotation variability over the 0-7 nm, 17-22 nm, 0-45 nm, and 117-125 nm spectral
bands.

= Results reveal the presence of prominent solar rotation effects in the Martian thermosphere density for all species, irradiance
bands, and altitudes. These effects are strongest at higher altitudes (200-250 km) and under high solar flux conditions. The
best agreement between solar rotation variability in flux and density is found close to the sub-solar point, but the highest
sensitivity to solar flux is found near the solar terminator.

s Future work will (a) verify the the connection to the HSS for the ~9-day thermospheric variability observed at Mars, (b)
compare the response with that at Earth, (c) extend the comparative analysis to the solar rotation variation
in EUV irradiance.
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