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Drought assessment has been outpaced by climate
change: empirical arguments for a paradigm shift
Zachary H. Hoylman 1,2✉, R. Kyle Bocinsky 1,3 & Kelsey G. Jencso1,2

Despite the acceleration of climate change, erroneous assumptions of climate stationarity are

still inculcated in the management of water resources in the United States (US). The US

system for drought detection, which triggers billions of dollars in emergency resources,

adheres to this assumption with preference towards 60-year (or longer) record lengths for

drought characterization. Using observed data from 1,934 Global Historical Climate Network

(GHCN) sites across the US, we show that conclusions based on long climate records can

substantially bias assessment of drought severity. Bias emerges by assuming that conditions

from the early and mid 20th century are as likely to occur in today’s climate. Numerical

simulations reveal that drought assessment error is relatively low with limited climatology

lengths (~30 year) and that error increases with longer record lengths where climate is

changing rapidly. We assert that non-stationarity in climate must be accounted for in con-

temporary assessments to more accurately portray present drought risk.
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Accurately monitoring water availability is critical for sus-
tainable water resource management as Earth’s climate
continues to change and drought impacts human

populations1,2, food production3, and valuable ecosystem
services4–6. In the United States (US) drought monitoring ensures
land managers, practitioners and producers have local and
regional information to prepare for and respond to water
scarcity7. This monitoring is conducted across scales; spatially
from local to regional scales, temporally from the evolution of
flash droughts8 to long-term deficits in surface water supplies,
and institutionally from local, state, and national organizations.
Drought monitoring at the national scale is led by the National
Drought Mitigation Center (NDMC), the United States Depart-
ment of Agriculture (USDA), and the National Oceanic and
Atmospheric Administration (NOAA), who produce weekly
drought maps constituting the United States Drought Monitor
(USDM)9. The USDM is generated using a synthesis of many
datasets by experts and input from a variety of entities (including
state drought task forces) that rely on the convergence of evidence
to define drought severity; from D0 (“abnormally dry”) to D4
(“exceptional drought”). These drought categories trigger critical
emergency services and the distribution of several US federal
disaster assistance programs related to the livestock and agri-
cultural industry (e.g. the Livestock Forage Disaster Program, the
Emergency Assistance for Livestock, Honeybees and Farm Raised
Fish Program and the Emergency Haying & Grazing – Con-
servation Reserve Program). Disaster relief programs tied to the
USDM provide hundreds of millions to billions of dollars per year
in financial disaster assistance10.

Weekly drought assessments reflect how current conditions
compare to a historical record of events and are critical for
understanding the degree of moisture surplus or deficit in a parti-
cular location. Variables representing the state of water availability
—e.g. precipitation, evapotranspiration, soil moisture, and stream-
flow—are used to evaluate conditions over varying timescales,
which in turn represent different forms of drought. These indicators
are then compared to impact and condition monitoring reports
which are used to validate physical drought assessments. There are
many drought metrics in use today11, most of which rely on a
statistical framework that standardizes raw values into anomalies
using probability statistics12–14. One of the most widely recom-
mended drought metrics for operational use is the Standardized

Precipitation Index (SPI)12,15,16, which estimates the probability of
observing a certain magnitude of rainfall over a timescale of interest,
customarily ranging from weeks to years.

The need to standardize an approach for computing drought
metrics led to several studies that establish “best practices” for
their computations12,17–20. A key consideration is the clima-
tology length, or the time period used as a reference frame. The
apparent severity of any given drought event depends on this
frame of reference 21, especially within the context of climate
change. Oft-cited studies in drought monitoring argue uncer-
tainty declines with longer climatological records12,17,22, with
approximately 60 years (or more) of observations considered
requisite to promote parameter stability in drought models.
This conclusion is currently included in drought monitoring
recommendations by the World Meteorological Organization23.
In contrast to drought monitoring, weather and climate sci-
ences typically use climate normals based on 30 years of data
that are updated every decade to describe average conditions
and associated anomalies. These climate normals are intended
to account for, at least in part, climate variability and change24.
Updating expected climatic conditions (similar to climate
normals) is critical in a non-stationary system to accurately
contextualize conditions. If this concept is ignored, climate
change may render current reference frames inappropriate for
operational water resource assessment21.

Despite the research establishing drought metric best practices,
the impact of non-stationarity in climate systems, especially those
driven by anthropogenic climate change, are not currently
accounted for in conventional drought metrics and drought
monitoring products such as the USDM. Here, we demonstrate
that this omission results in increased drought metric error and
bias where climate has shifted substantially from the time-
integrated period-of-record distribution (Fig. 1). If climate change
is not accounted for in drought assessment, “drought” conditions
(or water surplus) may become commonplace. However, is a
“drought” really occurring if aridity is the “new normal”?

Results
Conventional methods ignore climate change. The conclusions
of previous research investigating the influence of climatology
length on drought assessment uncertainty were based on a core

Fig. 1 Conceptual model describing the drought metric bias associated with a non-stationary climate scenario. A theoretical accumulated precipitation
dataset is presented on the horizontal axis, while the associated probability density function (PDF) is on the vertical axis. [left] Conceptual model showing
one way that probability distributions can shift in time when conditions transition from a wetter, less variable state to a drier, more variable state. [right]
Demonstration of how this shift can produce both a dry bias during dry times and a wet bias during wet times for a theoretical distribution.
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assumption; the probability distribution that describes meteor-
ology across the period of record is unchanging. In other
words, the sampled data comes from a distribution that is sta-
tionary in time, “fluctuat[ing] within an unchanging envelope of
variability”21. Under this assumption, the incorporation of
“extreme events” from several decades earlier is thought to better
represent the true distribution. However, precipitation dynamics,
and the probability density functions (PDFs) that describe them,
are indeed changing in time (for example: Fig. 2, S7, S8).
Importantly, the change in precipitation dynamics is non-ran-
dom, nonlinear, influenced by anthropogenic climate change25

and contributing to bias in our assessment of contemporary
drought across the US. In this analysis, we focus on precipitation
dynamics, but it is important to highlight that the concepts
presented here are applicable to any analysis that utilizes a his-
torical reference frame to standardize raw values (e.g. tempera-
ture, evapotranspiration, streamflow, snowpack, etc.) under non-
stationary conditions.

Milly and colleagues21 evaluated the use of PDFs in water
resource assessments and concluded that stationarity assumptions
are inappropriate in the context of climate change. In contrast to
the longest climatology (the “period-of-record”), the evaluation of
contemporary likelihood based on a recent reference frame
(current climatic conditions) puts events that impact planners,
managers, and producers today into a relevant context — this is
the objective of modern drought monitoring. In fact, research
suggests that communities and producers rely heavily on near-
term memory and recent experiences for decision making26,
behavior reflective of adaptation to non-stationary environments.
Here, we demonstrate drought conditions defined using period-
of-record climatologies are biased by historical conditions that are
assumed to have a higher probability of occurrence than has
recently been observed, due to climate change. These findings
warrant a discussion of conventional drought monitoring

practices and how the drought management community may
bring them into alignment with contemporary drought risk.

Deriving normals in the context of climate change. Our
numerical simulations indicate there are substantial differences in
absolute SPI error depending on whether precipitation datasets
are derived from a single probability distribution (simulating a
stationary climate; Fig. 3) or from many probability distributions
that vary as a function of time (simulating a non-stationary
climate; Figs. 2, 4). Our stationary climate simulations confirm
L-moment-based methods for fitting two-parameter gamma
distributions are effective at estimating the generating gamma
distribution given a relatively low number of observations
(Fig. 3a). Uncertainty in the gamma distribution parameter esti-
mates (interquartile range [IQR] ribbons about Fig. 3a rate and
shape parameter plots) declined sharply as the number of
observations in the climatology increased from 2 to 30 observa-
tions. Over 1000 simulations, parameter estimates converged on a
median [IQR] rate parameter estimate of 0.03 [0.013] and a shape
parameter estimate of 2.53 [0.94] with only 30 observations; the
true rate and shape parameter pair were 0.03 and 2.5, respectively
(Fig. 3a). This reduction in parameter estimate uncertainty was
associated with a sharp decline in the absolute cumulative dis-
tribution function (CDF) error (i.e. the discrepancy between the
observed and modeled distribution) and SPI error as observations
increased from 2 to 30 observations (Fig. 3a). A slight decrease in
uncertainty of parameter estimates occurred when 60 (0.03
[0.009] and 2.53 [0.65]), or 90 (0.03 [0.006] and 2.49 [0.48])
observations were included. Ultimately, the absolute SPI error
was 0.16 [0.19], 0.11 [0.13] and 0.08 [0.11] for 30, 60 and 90
observations respectively. Absolute SPI error estimates exhibited
little variation when simulations were conducted across observed
model parameters associated with 30-, 60- and 90-day timescales

Fig. 2 Probability distribution shift for Global Historical Climatology Network (GHCN) site USC00381770 located at Clemson University in South
Carolina. [left] Subplots show 30-year moving window values of the gamma distribution rate and shape parameters, mean precipitation and coefficient of
variation (CV) of precipitation for a 30-day timescale on August 1st. Horizontal lines represent values computed using the temporally integrated
distribution. [right] Probability density functions (PDFs) for each of the 30-year moving windows. The color scale represents the 30-year moving window’s
final year and the black and white dashed line represents the temporally integrated PDF.
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Fig. 3 Summary of simulations that fit gamma probability distributions to a known stationary distribution. These simulations use random samples of
varying climatology lengths (from 2 to 100) and the L-moment method for estimating gamma parameters. A Subplots showing the detailed simulation
results for a single gamma distribution pair derived from 1000 simulations; rate and shape parameters as well as the cumulative distribution function (CDF)
absolute error and Standardized Precipitation Index (SPI) absolute error are presented. Black lines and gray ribbons represent the median [interquartile]
value of the 1000 simulations. B Replication of the aforementioned simulation for 100 randomly selected gamma distribution parameter pairs, each
simulated 1000 times, focused on the absolute SPI error.

Fig. 4 Summary of simulation results for a non-stationary distribution using the observed 30-year moving window gamma parameters from 11 Global
Historical Climatology Network (GHCN) sites. The Standardized Precipitation Index (SPI) was estimated by fitting a gamma distribution to random
samples of differing lengths, with each random sample being generated by the observed moving window generative gamma distribution for each site. The
absolute SPI error was then computed using the known SPI value from the known (observed 30-year moving window) distribution for the most recent
observation (e.g. 2020, consistent with operational SPI calculations). A Detailed simulation results for GHCN site USC00381770 located at Clemson
University in South Carolina for the 30-day SPI for August 1st. Black lines and gray ribbons represent the median [interquartile] value of the
1000 simulations. B Results for 10 additional GHCN sites for various geographical locations and 30-, 60- and 90-day timescales for August 1st. Gray
shading represents the interquartile range for simulations at all sites for each timescale.
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(Figs. S1, 3b) indicating that this error analysis is generally
representative of common operational SPI calculations.

The non-stationary simulations using observed 30-year moving
windows from Global Historical Climatology Network (GHCN)
stations confirm that contemporary drought metric error
(computed with respect to the current 30-year distribution) does
not necessarily decrease given a longer climatology in locations
where climate change velocities are high (Fig. 4). For example, at
GHCN site USC00381770 located at Clemson University, South
Carolina (Fig. 2), the absolute SPI error initially declined in a
similar fashion to the stationary climate simulations to achieve an
absolute error of 0.18 [0.22] with 30 observations (Fig. 4a).
However, error more than doubled as the number of observations
increased from 30 to 90 samples (SPI error = 0.49 [0.31] when 90
observations were included). In some cases, error was minimized
with less than 30 observations (e.g. at Spokane International
Airport, WA, and Asheville, NC for 30-day SPI) or greater than
30 observations (e.g. at Huron Regional Airport, SD and Cedar
Rapids #1, IA for 30-day SPI). This analysis across sites indicates
the relationship between the absolute SPI error and the number of
observations in the climatology is site and timescale specific and
rarely follows the error-climatology length relationship consistent
with a stationary climate (Fig. 4b). This important result
contradicts the conventional wisdom that error decreases with
increasing climatology lengths when computing error based on
contemporary probabilities.

Our results demonstrate that there is a balance that must be
struck to best account for non-stationarity in drought assessment.
On one hand, there is a fundamental relationship between the
number of observations available and the uncertainty associated
with parameterization for any statistical distribution, stationary
or otherwise (Fig. 3). On the other hand, error does not
necessarily decrease as climatology length increases in a non-
stationary climate (Fig. 4). In fact, the “true” distribution in a
non-stationary time series is latent to the observer, who, without
prediction, is fated to assess normalcy based solely on past, and
therefore outdated, conditions. Therefore, error may increase
substantially depending on the location-specific climate change
velocity27 (Figs. 2, 4). In monotonic non-stationary scenarios, a

time-integrated distribution (for example 90 observation clima-
tology) will be diluted by increasingly outdated and progressively
less probable observations and cause the integrated distribution to
drift farther from the contemporary distribution (Fig. 1). It is
important to emphasize that this is a site-specific phenomena;
locations that have experienced little or no change (i.e. stationary
climates) will have less SPI error with increasing climatology
lengths—but in practice, this stationary climate example is the
exception, not the rule (Fig. S2).

Drought metric bias and climate change. Non-stationary pre-
cipitation probability distributions have substantial impacts on
drought metric computation and, ultimately, drought metric bias
when current methodologies are followed. We observed large dif-
ferences between SPI values across the US when drought metrics
were computed using the longest possible, time-integrated, period-
of-record climatology (greater than 70 years, representing estab-
lished best practices) versus the most recent 30-year climatology
(Fig. S2). Our results also indicate that these differences vary sub-
stantially across timescale and moisture state (Fig. 5, S4, S5, S6).
Generally, spatial patterns of bias (dry versus wet) are consistent
across timescales when controlling for moisture states; however, the
magnitudes of bias vary. Drought metric bias was exacerbated as the
dryness or wetness state increased with respect to the period-of-
record climatology (Fig. 5, S3, S4, S5, S6).

“Hot spots” of dry bias—i.e. where the period-of-record
climatology suggests conditions are drier than the 30-year
climatology—were strongly apparent in the southeastern and
southwestern US when evaluating the average bias across all days
and wetness/dryness states (Fig. S2). Dry biases were more
spatially extensive across the United States (i.e. not constrained to
the southwestern and southeastern US) when the period-of-
record SPI time series were less than −2 (Fig. 5), and therefore
categorized as “exceptional” or “D4” drought in the USDM
classification28. This bias was especially apparent when SPI was
computed using a 30-day timescale (Fig. 5). During these
historical periods of drought, there was a dry bias for 65.1%,
61.2%, and 56.5% of stations analyzed, for 30-, 60- and 90-day

Fig. 5 Standardized Precipitation Index (SPI) bias for Global Historical Climatology Network (GHCN) sites across the United States during periods
with SPI <−2 (very dry conditions) defined using the period-of-record SPI timeseries. Bias was computed as the median daily difference between the
period-of-record SPI and the 30-year (“contemporary”) SPI from June 1 to August 31, 1991–2020. Dry bias (represented by red) denotes locations where
the period-of-record reports conditions that are drier than the most recent 30 years for [left] 30-day, [middle] 60-day and [right] 90-day timescales.
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timescales, respectively. Overall, the southwestern and south-
eastern portions of the US were associated with the most
consistent dry bias and exhibit the greatest magnitude of bias.
Conversely, a large portion of the eastern US exhibits a strong wet
bias—i.e. where the period-of-record climatology suggests present
conditions are wetter than the 30-year climatology—along with
the Midwest and Pacific Northwest regions (Fig. S2). This wet
bias was accentuated during extremely wet time periods (when
period-of-record SPI values are greater than 2) where we
observed a consistent and large wet bias across the US (Fig. S3).
This wet bias was consistent across timescales, even at the station
scale; there was a wet bias for 93.5%, 90.6%, and 88.8% of stations,
for 30-, 60- and 90-day timescales respectively.

Our analysis indicates both dry and wet bias, each of which has
significant implications for either side of the drought assessment
spectrum. The extensive dry bias will influence the perspective of
decision makers on drought magnitude such that drought will
appear more severe than is appropriate for contemporary
conditions. Contrary to this result, some locations (such as the
Pacific Northwest and the American Midwest) are trending
wetter, and exhibit a strong wet bias during dry times. Drought in
these regions will be considered less severe than is appropriate
given the current climate state.

Discussion
The National Oceanic and Atmospheric Administration’s (NOAA)
recent analysis of billion-dollar weather and climate disasters
reported drought as the second most costly disaster type in the US,
behind only tropical cyclones29. Since 1980, major drought events
have produced an average of $9.3 billion in inflation-adjusted
damages per event, with three events exceeding $30 billion in 1980,
1988, and 2012. Damages associated with these catastrophic
droughts are offset by federal disaster assistance programs related to
livestock and crop risk management which have become a critical
component of the U.S. agrosystem. For example, the Livestock
Forage Disaster Program (LFP), which is triggered by the USDM
drought severity categories, provided over 2.5 billion dollars of
disaster relief in 201210. As important as disaster relief is for pro-
ducers to promote climate resiliency, we assert that drought mon-
itoring and associated risk management programs need to be
aligned with contemporary drought risk, else a divergence in actual
risk and disaster response may occur.

The concepts responsible for the non-stationary bias reported
in this study are not only applicable to the SPI, but also to any
metric that uses a historical reference period to characterize
anomalies. Multivariate drought metrics such as the Standardized
Precipitation Evapotranspiration Index (SPEI)13 rely on the same
general probabilistic framework and are susceptible to non-
stationary bias. Climate change impacts on temperature30 and
atmospheric aridity (e.g. vapor pressure deficit31) are generally
more pronounced and unidirectional than precipitation30 which
may cause a more consistent bias in alternative metrics. Locations
with temporally co-occurring reductions in precipitation and
increases in evaporative demand will be the most susceptible to
significant multivariate drought metric bias due to climate
change. Traditional parametric anomalies (z-scores) and non-
parametric approaches such as empirical cumulative distribution
quantiles (empirical percentiles) are also sensitive to non-
stationarity bias where climatology lengths are not considered.

Our research highlights the need to produce a standardized
approach to account for non-stationarity in drought monitoring
so that decision makers are basing conclusions on similar data-
sets. Thirty-year climate normals have been used widely to
acknowledge this level of climatic complexity in a simple and
standardized way and are currently indoctrinated into many

scientific practices32,33. Our analysis supports this 30-year mov-
ing window approach to balance the statistical constraints of PDF
parameterization while retaining a contemporary reference frame.
This methodology represents non-stationarity while leveraging
the existing infrastructure for drought monitoring across the US,
which is strongly dependent on traditional drought metrics such
as the SPI11. A moving window, retrospective approach is also
likely to mirror the reference frames used in decision making by
agricultural producers and others most impacted by drought, and
thus may be more intuitive to those communities26. One potential
issue with a moving window approach is that the relationship
between the drought metric absolute error and the number of
observations in the climatology is site and timescale specific,
due to differences in climate change velocities. Other more
computationally intensive approaches that account for localized
variability have also been proposed34–36. These leverage climate
indices as external covariates, time-varying moments and/or
Generalized Additive Models to estimate momentary generative
distributions through time. These methods represent a novel
approach that may be considered, but they would require a sig-
nificant change in the established drought monitoring practices.
Ultimately, further dialogue is needed within the drought and
water resources communities on how to better characterize
drought and contemporary risk in an era of rapid change.

Methods
Study area and time period of interest. Our study area was defined as the
contiguous US, which features a diverse range of climatic conditions and has
produced a wealth of long-term meteorological datasets. For this study we focus
our analysis and results on the summer time period (June 1–August 31); however,
data was considered back to March 4th for certain timescales and dates (e.g.
90 days prior to June 1st, discussed below). We chose this time period for two
primary reasons: (1) drought conditions are common and often strongly impactful
for agricultural systems during the summer months; and (2) to maximize the
number of long-term datasets available for analysis. Drought metric computations
are highly sensitive to missing data, especially when computation of drought
metrics is based on the summation of data over a given timescale (for example
30 days) as is the case for Standardized Precipitation Index (SPI). Accordingly, we
applied very restrictive constraints on whether data from a specific station or year
was included in our analysis (described more below).

Global Historical Climatology Network. We used the Global Historical Clima-
tology Network (GHCN)37 as a primary dataset for our analysis. We processed the
GHCN data in a stepwise process to ensure quality and completeness of data, while
acknowledging that computations based on different timescales (here, 30, 60, and
90 days) require different amounts of complete data. To begin, we filtered the
GHCN data for stations that started reporting in 1950 or earlier and were currently
reporting as of 2020. This accomplishes two initial constraints, 1. The data record
has the potential to have 70 years or more of complete data (considered the
minimum number of years to compute the “period-of-record” climatology) and 2.
The data from a station is considered “operational” in 2020 and therefore may be
used in present-day drought monitoring. Next, we filtered the data for data
completeness for different timescales. For example, a 30-day timescale requires
complete data for 30 days prior to any day of interest. Here, our period of interest is
from June 1st to August 31, therefore to compute a drought metric for June 1st, one
will need a complete data record back to May 3rd (30 days including June 1st) for
each year included in the analysis. Thus, for a 30-day timescale, completeness of
record was evaluated from May 1st to August 31st. Alternatively, for a 90 day
timescale, completeness is required to March 4th, thus, completeness of record was
evaluated from March 1st to August 31st. Therefore, differences in timescale cause
differences in the number of stations ultimately evaluated for additional analysis.
All analysis was conducted in the R programming environment38. We accessed
GHCN data using the RNOAA package39.

Statistical analysis
Moving window operations. Moving window operations are at the core of the
analysis presented in this study. Each computation is conducted without the use of
data from the future with respect to the time period of interest. For example, any
operation conducted in 2015 would only consider data in 2015 and prior. This is
important in order to emulate the analysis that would have been conducted in 2015
(conventional drought monitoring does not use future projections in analysis).
Although, it is important to acknowledge that it is common practice to retro-
spectively compute drought metrics (or anomalies) based on a reference period,
that includes data that is in the future from a period of interest.
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Gamma probability distribution estimation. Fitting probabilistic distributions to
empirical data is one of the most important steps in computing drought metrics.
Estimated distributions contextualize conditions with respect to expected out-
comes in order to normalize data into anomalies. In this study, we fit a gamma
probability distribution to an aggregated (summed) precipitation time series. To
do so, raw daily precipitation time series were first aggregated over three time-
scales, 30, 60 and 90 days, to compute the annual summed precipitation time
series for a day of interest (for example, June 1st). Once an aggregated pre-
cipitation time series was computed for a given site and day, we computed the
unbiased sample probability-weighted moments of the aggregated precipitation
data, which were then converted to L-moments (linear combination of traditional
moments). Estimates of the gamma distribution parameters (rate and shape) were
then computed given the L-moments of the data. This procedure was conducted
using the lmomco package40.

Standardized precipitation index computation. The Standardized Precipitation
(SPI) was designed by McKee and others15 to standardize precipitation time series
across a record in order to normalize precipitation anomalies in both time and
space while still accounting for non-normal distributions. To calculate the SPI, we
computed the cumulative distribution function (CDF) of the aggregated pre-
cipitation time series using the associated gamma distribution fit (described above).
The CDF values were then evaluated within an inverse Gaussian function with a
mean of zero and a standard deviation of one to obtain the final SPI value. This
“normalization” of the data centers CDF values of 0.5 (average timescale summed
precipitation) about an SPI value of zero. Wet[dry] conditions have CDF
values > [<] 0.5 and SPI values > [<] 0.

Drought metric bias. To compute the average difference (bias) between climatol-
ogies of differing lengths, we computed the median difference between daily
summer time (June 1st—August 31st) SPI values for a long and short period of
record. Our two time periods of record were: 1. The “period-of-record’ climatology
which is composed of at least 70 years of complete data and 2. The most current
30-year record (“contemporary” record) which was composed of at least 25 years of
complete data within the 30-year moving window (i.e. for 2020, 1991–2020, or for
2019, 1990–2019, and so on). The final bias was then computed as the median daily
period-of-record SPI value minus the contemporary SPI value. Negative [positive]
values represent locations where the period-of-record SPI value is on average lesser
[greater] then the contemporary SPI value (dry [wet] bias). We computed the
average bias for all observations in the study (Fig. S2). To evaluate if bias varied as a
function of wetness/dryness state, we also computed the bias for breaks in the
period-of-record SPI timeseries. Breaks were defined as period-of-record SPI > 2, >
2 SPI > 1, 1 > SPI >−1, −1 > SPI >−2 and −2 > SPI (from wet to dry, respectively,
Fig. 5, S3, S4, S5, S6).

To aid in visually evaluating spatial patterns in drought metric bias we
computed krigged maps of bias for all observations together and for each of the
wetness/dryness categories separately. To generate these krigged maps we fit a
variogram to each of the datasets using the automap41 and gstat42 packages in the
R programming environment. Once a variogram was fit to the data we predicted
the krigged surface of bias using the gstat package across a 1/3° x 1/3° raster in the
WGS84 (EPSG 4326) coordinate projection system.

Monte Carlo analysis. In order to evaluate the absolute SPI error associated with
parameterizing the gamma probability distribution with differing climatology
lengths we ran three separate Monte Carlo simulations. The three simulations were
meant to capture a range of scenarios under which SPI may be computed. The
three simulations were: (1) simulation of a single stationary distribution with
known gamma distribution parameters, (2) simulation of many stationary dis-
tributions with known gamma distribution parameters (parameter pairs sampled
from the observed distribution of gamma parameters, Fig. S1), and (3) Simulation
of a non-stationary distribution with known gamma distribution parameters that
vary through time (parameter pair time series derived from GHCN site data, for
example, Fig. 2). For all simulations, CDF and SPI error was assessed based on the
most contemporary observation (“today’s” value). This methodology most closely
mimics real-time drought monitoring processes.

Stationary distribution Monte Carlo analysis (single parameter pair). To evaluate
how the absolute SPI error varied as a function of the number of observations
(years) in each climatology, we conducted an iterative experiment (Monte Carlo
simulation). We defined a rate and shape parameter pair from which we generated
random samples. The random samples come from a known distribution, thus we
computed the true CDF and SPI values associated with that random sample.
Probabilistic CDF and SPI values were computed based on fitting a gamma dis-
tribution to the randomly generated data of differing lengths, from 1 to 100 sam-
ples in 1 sample increments. The associated gamma distribution parameters were
also stored to evaluate the convergence of estimated parameters towards the known
gamma distribution parameters for differing climatology lengths. The absolute SPI
and CDF error were computed by subtracting the probabilistic value from the true
value for the most current observation (synonymous with the 2020 value used in
operational drought monitoring). We repeated this process 1000 times, generating
new data for each simulation. Finally, we summarized the results of the

1000 simulations by computing the median and interquartile range (IQR) of the
gamma distribution parameters as well as the absolute CDF and SPI error for each
climatology length (Fig. 3a).

Stationary distribution Monte Carlo analysis (multiple parameter pairs). Following
the method described above, but focusing on the absolute SPI error, we replicated
the Monte Carlo simulation using 100 randomly sampled parameter pairs based on
the full parameter space of observed parameters captured in this study (Fig. S1,
white scatter points; June 1–August 31; 1991–2020, 30-, 60- and 90-day timescales,
parameter space n= 4,907,001). This Monte Carlo simulation was meant to
evaluate if the error estimation described above is dependent on the gamma dis-
tribution parameter pair evaluated. For example, it is possible that distributions
with greater variability may require more samples to adequately fit the probability
distribution when compared to a distribution with lesser variability. Thus, we
replicated the analysis above with 1000 simulations per parameter pair. In the same
manner as above, we computed the median and IQR absolute SPI error for each
individual parameter pair and for all simulations and parameters together (Fig. 3b).

Non-stationary distribution Monte Carlo analysis. To evaluate the effect of a non-
stationary distribution on the absolute SPI error, we adapted the method described
above using parameter pairs that are dynamic in time. Therefore, for each of the
climatology lengths (1−100 samples), random data was generated from a new
distribution. The distributional parameter pairs used in this simulation were
derived from the 30-year moving window analysis of observed data at 11 GHCN
sites (Fig. 4). These 11 sites represent locations with 100 years or more of complete
precipitation records (as defined above) for a given timescale. Therefore, the annual
changes in parameter values in the simulation are representative of true, observed
distributional shifts (for example, Fig. 2; Fig S7; Fig S8). In order to simulate annual
shifts in the gamma distribution, we infilled any missing rate and shape parameters
using a spline function (shown in Fig. 2). However this was only done if there were
missing values (<2% of data), thus we used the real 30-year moving window
parameter pairs whenever possible.

First, we used the gamma distribution pairs from GHCN site USC00381770,
located at Clemson University, South Carolina (Fig. 2). For each simulation, we
generated a random sample from the time-specific gamma distribution for each of
the climatology length values (1–100). Probabilistic SPI values were computed by
fitting a gamma distribution to the randomly generated samples from each of the
generative distributions. Therefore, at a climatology length of 30 observations
(years), the probabilistic value was computed by fitting a gamma distribution to the
randomly generated 30 observations from the 30 generative distributions
(replicating an analysis from 1991 to 2020). Similarly, for a climatology length of 90
observations, the probabilistic gamma distribution was fit to the data from the 90
previous generative distributions (effectively 1931 to 2020). The absolute SPI error
for the most recent observation (effectively 2020) was computed by subtracting the
probabilistic value from the true value computed using the most current gamma
distribution (2020). This analysis was conducted for climatology lengths from 1 to
100 and the simulation was conducted 1000 times. These results were summarized
by computing the median and IQR of the absolute SPI error (Fig. 4a). We
replicated this analysis for 10 additional GHCN sites and for the 30-, 60- and 90-
day timescales (Fig. 4b).

Data availability
All data used in this analysis is publicly available and freely accessible using the code
provided; however, derivative data generated in this study have been deposited in the
Zenodo database under accession code 5047800.

Code availability
All code used to perform this analysis can be accessed at https://github.com/zhoylman/
drought-year-sensitivity.
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