Fine-scale Waves and Shallow Mixing Layers in the TTL and Lowermost Stratosphere

Martina Bramberger, M. Joan Alexander, Sean M. Davis, Terry Deshler, Doug Goetz, Albert Hertzog, Lars Kalnajs, Sergey Khaykin, Aurelién Podglajen

Strateole 2

Strateole 2 – in a nutshell:

- 25 super-pressure balloons from Mahe, Seychelles Islands (4.7S, 55.5E)
- Flight altitude: 18 20km
- Data from:
 - November 2019 until late February 2020
 - October 2021 until January 2022
- Mean flight duration: ~3 months
- Insitu instrument: TSEN (temperature, pressure, wind)
- Other scientific instruments: Ozone, CO₂, water vapor and particles

Strateole 2 – Balloon Flight Tracks

Strateole 2 – Balloon Flight Tracks

Test campaign in 2019 (8 flights)

- Nov 2019 Feb 2020
- Quasi-Biennial Oscillation (QBO) westerly phase at 20 km

Science campaign in 2021 (17 flights)

- Oct 2021 Jan 2022
- QBO transition westerly to easterly

Background - QBO

NWRA

QBO

- -> modulates MJO intensity /duration
- -> modulates polar stratospheric vortex
- -> teleconnections to NH winter season weather

-> important for S2S forecasts and interannual climate

Challenges in representation of QBO in current GCMs:

- QBO is far too weak between 50hPa and 100hPa in most climate models (Bushell et al. 2020)
- Two disruptions in the cycle in the last 6 years suggest QBO may already be changing
- No consistency among GCMs on how QBO period will evolve in a warming climate

-> Representation of tropical waves and parameterization of gravity wave drag are large sources of uncertainty in modelling QBO (Holt et al. 2020, Richter et al. 2020)

Background - ATTREX

180° 160°W 140°W 120°W 100°W 80°W 60°W 40°W 20°W 0° 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E 180°

- Data is focused over Pacific
- Sparse data above cold point
- It was not possible to characterize the type and scale of the waves generating the Cirrus clouds in Kim et al. 2016

Strateole 2 - RACHuTS

- Profiles down to 2 km below the balloon of:
 - Temperature,
 - Water vapor and
 - Aerosol
- Part of the TTL3 configuration
- Unprecedented vert. resolution with one data point per meter
- 110 vertical profiles available from the test campaign

Wave Analysis – New Possibilities

Strateole2

RACHuTS T' profiles

- We use COSMIC 2 profiles to determine background temperature (T) profiles
- Background = 30 day average within a 5°x10° (lat x lon) box that is centered around each TSEN measurement point

Strateole2

Wave identification – different waves have different dispersion relations

Example for eastward propagating inertia gravity waves (EIG) on beta plane:

Combination of TSEN and RACHuTS: ω from TSEN measurements m from RACHuTS observations

Wave Analysis – New Possibilities

RACHuTS

Wave Analysis – Comparison to ERA5

Observed waves under-represented in ERA5 reanalyses

Active Cooling of Waves

Wave induced dT/dz <0

dT/dt <0 waves actively cool atmosphere

Cirrus cloud occurrence in Relation to

97% of all ice occurrences (particles >= 3 μm) are related to wave activity

NWRA

Cirrus cloud occurrence in Relation to Wave Activity

Pacific (160W - 80W)

South America / Atlantic (80W - 10E)

NWRA

Strateolei

Cirrus cloud occurrence in Relation to Wave Activity

Africa (10E - 50E)

Indian Ocean (50E - 180)

NWRA

Take aways

- EIG waves with WN 18 31 with short vertical wavelengths
- These waves have barely been observed before
- Estimated forcing about 0.3 0.5 m/s/day comparable to total wave forcing to drive QBO
- Large scale waves with short vertical wavelengths not resolved in modern GCMs or re-analyses as e.g. ERA-I, ERA5
- Detection of sub-visible cirrus clouds
- Most of cloud occurrence associated with large-scale waves (EIGW)

- Measurement is sensitive to phase shifts of 0.2 to 1.6 (=pi/2)
- Gives sensitivity of vertical wavelengths between 400m and 6km

NWRA

- Wave packets detected at high and low frequencies
- Vertical wavelengths range between 1.5km and 5.5km

NWRA

- Low-frequency waves are similar in ERA5, but different temporal evolution
- High-frequency waves are under-represented in ERA5
- Vertical wavelength similar to observation

Conclusions - RATS

- New instrument to estimate the vertical wavelength along the balloon flight tracks
- Comparison to ERA 5
 - Low-frequency wave packets are similar to observations
 - High-frequency wave packets are missing in ERA 5
 - ERA 5 reproduces the observed vertical wavelength of a low-frequency wave packet
 - Under-representation of wave packets maybe due to representation of convection or vertical resolution
- Planning to distribute this instrument on several balloons on the next Strateole 2 campaign

Bramberger, M., Goetz, D., Alexander, M.J., Kalnajs, L., et al. (2023). Tropical wave observations from the reel-down atmospheric temperature sensor (RATS) in the lowermost stratosphere during Strateole-2. Geophysical Research Letters, 50, e2023GL104711. https://doi.org/10.1029/2023GL104711

Conclusions - RACHuTS

Cirrus Clouds

- Detection of sub-visible cirrus clouds
- Most of cloud occurrence associated with large-scale waves (EIGW)

Large-scale waves

- EIGWS with short vertical wavelengths not resolved in modern GCMs or re-analyses as e.g. ERA-I, ERA5
- Provide considerable forcing for the QBO in the lowermost stratosphere
- Modulate the life cycle of cirrus clouds in lowermost stratosphere

Bramberger, M., Alexander, M. J., Davis, S., Podglajen, A., Hertzog, A., Kalnajs, L., et al. (2022). First super-pressure balloon-borne fine-vertical-scale profiles in the upper TTL: Impacts of atmospheric waves on cirrus clouds and the QBO. Geophysical Research Letters, 49, e2021GL097596. https://doi.org/10.1029/2021GL097596

Outlook – FLOATS

NWRA

Outlook – FLOATS

