Evaluating the Validity of Turbulent Kinetic Energy Dissipation Rate derived from Insitu 1D velocity fluctuation measurements

Abhiram Doddi¹, Dale Lawrence¹, David Fritts², Thomas Lund²

¹University of Colorado Boulder ²GATS Inc., Boulder

Background

- Turbulent kinetic energy dissipation rate ($\boldsymbol{\varepsilon}$) is a fundamental parameter characterizing the structure and intensity of turbulent flows.
- Measurements of Instantaneous turbulent kinetic dissipation rate requires the complete knowledge of 3D velocity field at high spatial and temporal resolution.
- Such measurements require very high sampling cadence (~ 10 s KHz) and low-noise ($< 10^{-8} \text{ m}^2 \text{s}^{-2}/\text{Hz}$) (or very high SNR).
- Insitu measurements of atmospheric turbulence made using ground based and airborne instruments provide coarsely sampled timeseries data of velocity components.
- Typically, only spatially and temporally averaged estimates of $\boldsymbol{\varepsilon}$ are derived from 1D insitu measurements.
- The 1D measurement data is subject to either a model **second-order structure function fit** or a **model turbulence energy spectrum fit** (in the inertial and/or viscous subrange) based on the hypotheses of Kolmogorov's turbulence theory.

G

Synthetic Observations using DNS

- Provides a "truth" data set for conducting synthetic observations to validate the spectral methods used for in-situ measurements of turbulence intensity (TKE dissipation rate).
- Allows assumptions commonly made in the spectral methods to be tested directly.
- Nontraditional DNS scaling used to match Kolmogorov scale and dissipation rate seen in the stratosphere.
- Well-validated spectral shape enables cm-scale turbulence intensity to be indirectly measured/predicted.
- Similar synthetic observations for deriving *ε* from radar observations (1-3 [km]) (using LES), sounding rockets (80-90 [km]) (using DNS), and flying hotwire measurements in the wind tunnel (using DNS) are described in Lundquist et al 2020, Strelnikov et al 2021, and Schroder et al 2023.

DNS Setup and Metrics

Model Setup

- Turbulence Reynolds Number $Re \sim \left(\frac{L}{\eta}\right)^{4/3} \sim 12,000$
- η Kolmogorov length scale, L DNS box size
- Forcing: Energy injected at wavenumbers $\left(\frac{2\pi}{L}\right)$, $\left(\frac{4\pi}{L}\right)$, $\left(\frac{6\pi}{L}\right)$, $\left(\frac{8\pi}{L}\right)$

Scaling

 Non-dimensional DNS results are scaled using HYFLITS measurements of ε (TKE dissipation rate) and ν (Kinematic viscosity)

 $m{arepsilon}_M=2.9e^{-3}\left[{m^3}/_{s^2}
ight]$ and $m{v}_M=4e^{-4}\left[{m^2}/_{s}
ight]$ sampled at 30 km

Kolmogorov length and time scales are constructed using measured *ε*, *ν*

$$\boldsymbol{\eta}_{M} = \left(\frac{\boldsymbol{v}^{3}}{\boldsymbol{\varepsilon}}\right)^{1/4} \text{ and } \boldsymbol{\tau}_{M} = \left(\frac{\boldsymbol{v}}{\boldsymbol{\varepsilon}}\right)^{1/2}$$
• $\widetilde{\boldsymbol{\varepsilon}}_{i} = \widehat{\boldsymbol{\varepsilon}}_{i} C_{\boldsymbol{\varepsilon}}$ $\widetilde{u}_{i} = \widehat{u}_{i} C_{\boldsymbol{u}}$ $i = 1, 2, 3, ... N^{3}$
[N = number of grid points in X/Y/Z direction; ^ Unscaled DNS;
~ scaled DNS]

•
$$C_{\boldsymbol{\varepsilon}} = \frac{\boldsymbol{\varepsilon}_M}{\langle \hat{\boldsymbol{\varepsilon}}_i \rangle}$$
 $C_{\boldsymbol{\eta}} = \frac{\boldsymbol{\eta}_M}{\langle \boldsymbol{\eta}_{DNS} \rangle}$ and $C_{\boldsymbol{\tau}} = \frac{\boldsymbol{\tau}_M}{\boldsymbol{\tau}_{DNS}}$ provide $C_{\boldsymbol{u}} = C_{\boldsymbol{u}}$

 Scaling results in box size of 15 [m] (in X, Y, and Z); and grid resolution of δ = 0.02 [m]

DNS Setup and Metrics

Model Setup

- Turbulence Reynolds Number $Re \sim \left(\frac{L}{\eta}\right)^{4/3} \sim 12,000$
- η Kolmogorov length scale, L DNS box size
- Forcing: Energy injected at wavenumbers $\left(\frac{2\pi}{L}\right)$, $\left(\frac{4\pi}{L}\right)$, $\left(\frac{6\pi}{L}\right)$, $\left(\frac{8\pi}{L}\right)$

Scaling

 Non-dimensional DNS results are scaled using HYFLITS measurements of ε (TKE dissipation rate) and ν (Kinematic viscosity)

 $\epsilon_M = 2.9e^{-3} \left[{m^3/_{s^2}} \right]$ and $\nu_M = 4e^{-4} \left[{m^2/_s} \right]$ sampled at 30 km

 Kolmogorov length and time scales are constructed using measured *ε*, *ν*

$$\boldsymbol{\eta}_{M} = \left(\frac{\boldsymbol{v}^{3}}{\boldsymbol{\varepsilon}}\right)^{1/4} \text{ and } \boldsymbol{\tau}_{M} = \left(\frac{\boldsymbol{v}}{\boldsymbol{\varepsilon}}\right)^{1/2}$$
• $\widetilde{\boldsymbol{\varepsilon}}_{i} = \widehat{\boldsymbol{\varepsilon}}_{i} C_{\boldsymbol{\varepsilon}}$ $\widetilde{u}_{i} = \widehat{u}_{i} C_{\boldsymbol{u}}$ $i = 1, 2, 3, ... N^{3}$
[N = number of grid points in X/Y/Z direction; ^ Unscaled DNS;
~ scaled DNS]

•
$$C_{\boldsymbol{\varepsilon}} = \frac{\boldsymbol{\varepsilon}_{M}}{\langle \hat{\boldsymbol{\varepsilon}}_{i} \rangle}$$
 $C_{\boldsymbol{\eta}} = \frac{\boldsymbol{\eta}_{M}}{\langle \boldsymbol{\eta}_{DNS} \rangle}$ and $C_{\boldsymbol{\tau}} = \frac{\boldsymbol{\tau}_{M}}{\boldsymbol{\tau}_{DNS}}$ provide $C_{\boldsymbol{u}} = \frac{C_{\boldsymbol{\eta}}}{C_{\boldsymbol{\tau}}}$

 Scaling results in box size of 15 [m] (in X, Y, and Z); and grid resolution of δ = 0.02 [m]

GATS

Universal Constants for 1D Energy Spectrum Surrogates

- $E(\boldsymbol{\kappa})$ Scalar Energy spectrum; $E(\boldsymbol{\kappa}) \sim \boldsymbol{\alpha} \boldsymbol{\varepsilon}^{2/3} \boldsymbol{\kappa}^{-5/3}$
- Plotting the 'compensated spectrum' $E(\kappa)\epsilon^{-2/3}\kappa^{5/3}$ against normalized wavenumbers $\kappa\eta$ results in the value for α in the inertial sub-range
- Similar method is adopted to also verify the Kolmogorov universal constants for 1D longitudinal $E_{33}(\kappa_3)$ and transverse $E_{11}(\kappa_3)/E_{22}(\kappa_3)$ surrogate spectra; α_L and α_T respectively (for κ_3 being the longitudinal direction)
- Experimentally derived values for α , α_L , and α_T reported in literature are 1.5, 0.55, and 0.65 respectively
- Compensated spectra from DNS results in $\alpha = 1.5$, $\alpha_L = 0.59$, and $\alpha_T = 0.7$
- DNS verification of Kolmogorov universal constants show biased estimated for α_L , and α_T

Synthetic Observations - Methodology

GATS

Results

Results

Preliminary Findings

- Spectral measurements provide accurate distribution of TKE dissipation rates for mature (stationary homogeneous isotropic) turbulence
 - Means of log10 ε_W and log10 $\langle \varepsilon_{DNS} \rangle$ over 2.5m data records agree to within 0.12 of a decade
 - Variances of log10 ε_{DNS} (not averaged) are similar to variances of log10 ε_W over similar domains
 - Variance of log10 $\langle \varepsilon_{DNS} \rangle$ (record average) is significantly smaller than log10 ε_W (spectral average over same record)---thought that this would be the closest comparison!
 - Distributions of ε_U , ε_V are similar to ε_W , indicating absence of significant anisotropy over the spectral data records
 - Averaging of $\boldsymbol{\varepsilon}_{U}$, $\boldsymbol{\varepsilon}_{V}$ and $\boldsymbol{\varepsilon}_{W}$ reduces variance in spectral estimates only marginally
- Spectral measurements can underestimate TKE dissipation rates for unsteady (early-stage) turbulence
 - Mean of log10 ε_W over whole planes shows a bias of 0.5 decade relative to log10 ε_{DNS} , with much wider distribution
 - Distributions of ε_U , ε_V are similar to ε_W , indicating absence of significant anisotropy over the spectral data records
 - Bias effect is more pronounced when longer measurement intervals are used (e.g., 15 m records instead of 2 m)
 - Conjecture this is due to spatial averaging of localized strong turbulence (inherent in the spectral method), i.e., lack of homogeneity over spectral data interval length. → Suggests smaller in-situ measurement intervals are better.

Future Work

- Evaluate the influence of Taylor Frozen turbulence hypothesis.
- Compare the distribution of spectrally derived $\boldsymbol{\varepsilon}$ with second-order structure function derived $\boldsymbol{\varepsilon}$.
- The analysis discussed so far neglects to account for the the biases introduced in the ε estimates due to observation and instrument errors such as
 - Sensitivity to balloon pendulation effects
 - Sensitivity to instrument/sensor misalignment relative to the longitudinal measurement direction (side-slip)
 - Sensitivity to instrument/sensor noise characteristics.
- Evaluate the sensitivity to wider frequency fitting ranges/time-averaging intervals.
- Investigate the applicability of Thorpe analysis to derive $\boldsymbol{\varepsilon}$ and comparisons with spectral and second-order structure function methods.

