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Introduction

» Aviation turbulence is crucial to flight safety, including passengers, crew, and aircraft structures.

» It also can cause flight delays and excessive fuel consumption, leading to millions of dollars in
losses to airlines every year (Sharman et al., 2006; Wolff & Sharman, 2008).

» Therefore, many studies have been conducted to better understand and predict aviation scale
turbulence, including:

> (i) case studies for turbulence sources and generation mechanisms using numerical
weather prediction (NWP) models and observations (Lee & Chun, 2018; Kim et al., 2019; Bramberger et
al., 2020; Trier et al., 2020; Kim et al., 2022),

> (ii) development of climatological turbulence distributions retrieved from in-situ
observations (Wolff & Sharman, 2008; Kim & Chun, 2011; Sharman et al., 2014; Kim et al., 2020),

> (iii) forecasting of turbulence potential regions using regional/global NWP model outputs
(Jaeger & Sprenger, 2007; Sharman & Pearson, 2017; Kim et al., 2018; Lee et al., 2022),

» and (iv) investigations into future variabilities in response to climate changes (Wiliams &
Joshi, 2013; Williams, 2017, Storer et al., 2019).



Introduction

Among these efforts, examining climatological distributions of turbulence using in-situ
observations can help to better understand turbulence characteristics, such as location, time,
frequency, and intensity (Wolff & Sharman, 2008).

This information could be helpful for tactical and strategic guidance for mitigating
turbulence encounters. For example, observational turbulence distributions are an essential
component of building and validating turbulence forecast systems, e.g., the graphical turbulence
guidance (GTG) system (Sharman et al., 2006; Sharman et al., 2014; Sharman & Pearson, 2017; Lee et al., 2022).

In-situ flight eddy dissipation rate (EDR) is one of the major data sources of aviation
turbulence, and is automatically computed from commercial aircraft using an onboard turbulence-
estimation and reporting algorithm (Cornman et al., 1995; Cornman, 2016; Sharman et al., 2014).

However, the in-situ flight EDR data are only available along the main flight routes (Sharman et al.,
2014), and these commercial flights often avoid turbulent convection areas and forecasted
turbulence regions (Sharman et al., 2006; Kim & Chun, 2012; Sharman & Pearson, 2017).

This hinders the construction of unbiased climatologies of aviation turbulence and the validation of
aviation forecasting systems.



Introduction

Recently, turbulence estimation using operational high vertical-resolution radiosonde data
(HVRRD) based on the Thorpe method (Thorpe, 1977) has been conducted over vast regions and
for long periods (Nath et al., 2010; Muhsin et al., 2016; Ko et al., 2019; Kohma et al., 2019; Zhang et al., 2019a;
2019b; He et al., 2020; Geller et al., 2021; Lv et al., 2021, Ko & Chun, 2022).

Radiosondes drift freely in the horizontal and vertical directions, and hence cover a wide area
horizontally and vertically without restriction of the aircraft routes.

EDR based on HVRRD (HVRRD-EDR) can be informative both in constructing climatologies of
atmospheric turbulence and in validating aviation turbulence forecasting systems.

As more and more operational radiosonde stations in the world archive high-resolution data
(Ingleby et al., 2016), HVRRD-EDR can be obtained globally and operationally, which can be a
valuable resource for atmospheric turbulence information in the free atmosphere in general
and for aviation turbulence research in particular.

This study compares the distribution of HVYRRD-EDR and in-situ flight EDR in the USA as a
first step toward applying HVRRD-EDR to aviation turbulence research.



High Vertical-Resolution Radiosonde Data (HVRRD)
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Thorpe method (Thorpe, 1977)
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v Thorpe displacement d = z — z;; Thorpe scale Ly = d, s

v" Assuming a linear relations between the L, and the Ozmidov scale L, = (s/N3)1/2, an energy dissipation
rate ¢ is calculated by
E = CKLT2N3

where Cx = 1 following Kantha and Hocking (2011) and Li et al. (2016), N is the Brunt-Vaisala frequency
v Instrumental noise (Wilson et al. 2010; 2011) and moist-saturation effects (Wilson et al. 2013) are considered



Comparison of HVRRD-EDR (= £!/3) and flight-EDR

» Flight-EDR is produced from commercial aircrafts using vertical wind- or acceleration-based

turbulence estimation and reporting algorithm implemented on aircrafts (Corman et al. 1995, Corman
2016; Sharman et al. 2014).

» This study used flight-EDR for 6 years (2012—-2017). During this period, total number of flight-EDR
is 214 857 394.

v' Delta Air Lines B737 / 767 | 777: 83 382 364 / 67 832 125/ 1 966 538
v Southwest Airlines B737: 61 676 367

Flight-EDR 0-20 kft, 2012-2017 Flight-EDR 20-45 kft, 2012-2017
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(FAA, CY2017 Passenger Boarding Data)



Area of comparison
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Comparison of HVYRRD-EDR and flight-EDR
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Comparison of HVYRRD-EDR and flight-EDR
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Both HVRRD-EDR and flight-EDR fit well by lognormal PDFs.

At z = 20-30 kft, the lognormal PDFs of HVRRD-EDR show more frequent distributions in the large values than those
of flight-EDR, while the distributions are consistent with each other at z = 30—40 kft and 40—45 kft.

This larger values of HYRRD at z = 20-30 kft can be related to
> 1) HVRRD-EDR is mainly generated by low static-stability and convective environments (ko & Chun, 2022) and
» 2) aircraft avoid turbulence regions associated with convection (Sharman & Pearson, 2017).
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Vertical distributions of HVYRRD-EDR and flight-EDR

(a) HYRRD-EDR
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(b) flight-EDR
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» (a) HVYRRD-EDR: Maximum of MOG
turbulence in 20-23 kft can be
related to weak static-stability and
convective environments (Ko and Chun,
2022).

> (b) flight-EDR: The occurrence
number is the largest at z = 35-38 kft
(main cruising altitude).

» The MOG ratio of flight-EDR is
consistent with that of HYRRD-EDR

. larger below 32 kft than above, with
the maximum at z = 23-26 kft

» The MOG and SEV ratios of flight-
EDR at z = 20-26 kft are smaller
than those of HYRRD-EDR
: This might be due to aircraft
avoiding turbulent regions related to
convection (Sharman & Pearson, 2017).
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HVRRD-EDR: low static-stability or
convective conditions (ko & Chun, 2022)
Flight-EDR: upper-level jet/front in
DJF and convection in the lower
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—> the results of negative correlation

at lower altitudes and positive

correlation at upper altitudes are
somewhat unexpected.




Horizontal distributions of MOG ratio

(a) HYRRD-EDR
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z = 20-30 kft: large MOG ratios over the
Rocky Mountains. The clearly weaker
MOG ratios of flight-EDR in JJA might be
due to that the aircrafts avoid forecasted
MOG turbulence regions related to
convection.

z = 3040 kft: HYRRD-EDR has the
minimum MOG ratio among three altitude
ranges, while flight-EDR shows the
maximum MOG ratio. Horizontally, both
datasets revealed large MOG ratios

mainly over the Rocky Mountains in all
seasons except in SON of HYRRD-EDR.

z = 40-45 kft: HVYRRD-EDR shows
peaks in several regions such as Texas,
Alabama, and Ohio—Pennsylvania, while
the flight-EDR shows a large MOG ratio
in the eastern-USA.
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Discrepancies between HVRRD-EDR and flight-EDR

» First, HVRRD-EDR and flight-EDR cannot detect the same volume of atmosphere because the aircraft
must not coincide with the radiosonde at the same location and time.

>
>

>

» Second, HVRRD-EDR and flight-EDR may detect atmospheric turbulence caused by different sources.

>

>

>

Therefore, a one-to-one match of the two datasets is not possible.
Nevertheless, if sufficient data are available, climatological characteristics of EDRs from in-situ flight
observations and HVYRRD may have some similarities.

Further investigation with more observational data, including different geographical locations, is required.

At cruising levels, flight-EDR is often related to clear-air turbulence (CAT) (Wolff & Sharman, 2008; Kim & Chun,
2011) because aircraft avoid intense convection either detected by the onboard radar or communicated
from ground-based air traffic controllers or dispatchers (Kim et al., 2011).

However, HVYRRD-EDR is mainly generated under low static-stability conditions where convective
activity is favorable (Ko and Chun, 2022).

Specifically, strong shear-induced turbulence associated with upper tropospheric jets in the
wintertime under strong stability, which is the main cause of MOG-level CAT reported by aviation
turbulence research and forecasting centers (e.g., Sharman et al., 2006; Kim & Chun, 2010; Kim & Chun, 2011; Kim &
Chun, 2016; Lee & Chun, 2018), is not captured by the Thorpe method.

Future investigations including some modifications of the Thorpe method to consider VWS under stable
conditions is required.
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Discrepancies between HVRRD-EDR and flight-EDR

» Third, but not least, aircraft measurements may have a limitation accounting for the response to
fluctuations at smaller scales than the aircraft size.
» Examining the distribution of Thorpe scale Ly, 63%, 79%, and 89% of the total cases have values less
than 35 m, 50 m, and 70 m, respectively.
» Note that the size of B737, B767, and B777 aircraft is 35 m, 50 m, and 70 m, respectively
(https://lwww.boeing.com/).
» This implies that many cases of the HVYRRD-EDR may be damped out in the aircraft response.
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Summary

This study compared the distributions of EDR derived from operational HVRRD and in-situ
flight observation from commercial aircrafts in the United States for six years (2012-2017).

Horizontal distributions of both EDRs from radiosonde data and flight data show large values
over the Rocky Mountains. However, they show large differences in vertical and temporal
distributions in terms of their peak location and timing.

We attribute these differences to the followings:
> First, turbulence observed from the two datasets cannot be the same event.
» Second, turbulence generated by strong wind shear under stable atmospheric
condition is not captured by the Thorpe method.
» Third, aircraft have limitations detecting fluctuation at scales smaller than the aircraft
size.

Given the limited global data on atmospheric turbulence, EDR estimated from operational
radiosonde data can be a valuable resource for research and development of aviation
industry and numerical weather forecasting models.

Laboratory for
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Supplementary figures
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HVRRD-EDR is sensitive to the
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Issues in the L,/L; ratio

Li et al. (2016)

Kantha and Hocking (2011)
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Vertical distributions of flight-EDR
grey shading: z = 20 — 50 kft

Current study
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(a) HVRRD-EDR
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