

This study is supported by JST FOREST program

Outline

0. Introduction

- Estimation of energy dissipation rates in the free atmosphere
- 1. Turbulent Energy Dissipation Rates (ϵ) Comparison:
 - Used VHF radar data at Syowa Station, Antarctic
 - Compared with radiosonde-based estimation via Thorpe method

(Kohma et al., 2019)

- 2. Preliminary Results of Machine Learning (ML) Approach for Estimating ε
 - Developed a ML-based algorithm to estimate ε from the radiosonde observations.

Introduction

- Turbulent kinetic energy dissipation rates (ε):
 A variable representing loss rate of turbulent kinetic energy
- Estimation method of ε in the free atmosphere
 - VHF/UHF radar (e.g., Sato & Woodman, 1982; Hocking, 1983)
 - Spectral width method / Power method
 - Radiosondes (e.g., Clayson & Kantha, 2008; Wilson et al., 2011)
 - Thorpe method
 - Aircraft/UAV (e.g., Sharman et al., 2014; Luce et al., 2018; 2023)
 - Rocket (e.g., Luebken, 1997; Luebken et al., 2002) etc. (e.g., Schneider et al., 2015)

Introduction

Estimation of ε by Thorpe method (Thorpe, 1977)

Thorpe Scale L_{T} : Local overturning length scale

1. Sort the measured density profile (left panel) into a monotonic profile (right panel)

- 2. Calculate displacement distance of each sample $(d = z_m z_n)$
- 3. Obtain $L_{\rm T}$ as the root-mean-square of d

Ozmidov Scale $L_0 \equiv \left(\frac{\varepsilon}{N^3}\right)^{1/2}$: Maximum turbulence length scale in a stratified fluid

Oceanic microstructure observations empirically indicated the proportional relation

$$L_0 = cL_{\rm T}$$
. ($c = 0.25$ -4)

Using this relation, we obtain

$$\varepsilon = c^2 L_{\rm T}^2 N^3$$

Introduction

Uncertainty of ε from Thorpe method

- The uncertainty of c (0.25-4) results in two orders of magnitude uncertainty of ε (: $\varepsilon \propto c^2$)
- Fritts et al. (2016): c values can vary depending on event type (e.g., KH instability or wave breaking) and timing
- Schneider et al. (2015): The discrepancy of ε for individual layers is up to a factor of 3000.

⇒ Comparison between radar-based and
 Thorpe-based *ε* using observations
 at Syowa Station, Antarctic (Kohma et al., 2019)

The program of Antarctic Syowa radar (PANSY radar)

Mesosphere-Stratosphere-Troposphere/Incoherent Scatter radar at Syowa Station (69S, 40E) in the Antarctic

System	Pulse Doppler radar. Active phased array system
Center freq.	47MHz
Antenna	Array consisting of 1045 crossed Yagi antennas <u>equivalent</u> to the circular area with a diameter of 160m (18000m²), light and tough (12.6kg/antenna)
Transmitter	1045 solid-state TR modules
	Peak Power: 520kW
Receiver	55 channel digital receiving systems
	Ability of imaging and interferometry obs
Power consumption	66kW (E-class amplifier)
Peripheral	24 antennas for E-layer FAI observation

Previous studies using the radar

- GWs in the troposphere-stratosphere: (Sato et al., 2014; Minamihara et al. 2018; 2020)
- GWs in the mesosphere: (Sato et al., 2017; Shibuya et al., 2017; Shibuya & Sato, 2019)
- Turbulent energy dissipation rates: (Kohma et al., 2019; 2020; 2021; Minamihara et al., 2023)

Observation of 3-d wind vectors in height regions of 1.5-20km and 60-90 km, and plasma parameters in 100-500 km with fine resolution and high accuracy **Direct estimation of vertical flux of horizontal momentum associated with gravity waves**

The full-system observations with all antenna groups has been operated continuously since October 2015.

Data: PANSY radar

Time interval: ~200 s Range resolution: 150 m (troposphere and stratosphere)

For estimation of energy dissipation rates, 4 <u>off-vertical beams</u> with a zenith angle of 10° are used to avoid the effect of specular reflection.

Estimation of ε from radar spectral widths

• $\sigma_{obs}^2 = \sigma_T^2 + \sigma_B^2 + \sigma_S^2 + \sigma_W^2$ (σ_T^2 : Turbulence; σ_B^2 : Beam broadening; σ_S^2 : Shear broadening; σ_W^2 : Time broadening) Beam broadening σ_B^2 is removed using an algorithm developed by Nishimura et al. (2020)

•
$$\varepsilon = 0.46Nw_{std}^2 (w_{std}^2 = \frac{\sigma_T^2}{2 \ln 2})$$
 (Sato & Woodman 1982; Hocking, 1983)

where N is buoyancy frequency

In the following, ε averaged over 4 off-vertical beams are shown.

Comparison of ε - radar estimation and Thorpe estimation

There are more recent studies including discussion on ε estimation based on Thorpe method. (e.g., Wang et al., 2019; Luce et al., 2023)

Short-term variation of ε from the radar - A time-height section (Sep. 2017)

 $\log_{10}(\varepsilon)$ (color), Tropopause (PV=2PVU, black broken contour), $\sqrt{u^2 + v^2}$ (JRA55, gray contour)

Short-term variation of ε from the radar - A time-height section (Sep. 2017)

 $\log_{10}(\varepsilon)$ (color), Tropopause (PV=2PVU, black broken contour), $\sqrt{u^2 + v^2}$ (JRA55, gray contour)

Short-term variation of ε from the radar - A time-height section (Sep. 2017)

 $\log_{10}(\varepsilon)$ (color), Tropopause (PV=2PVU, black broken contour), $\sqrt{u^2 + v^2}$ (JRA55, gray contour)

K-H billows observed by PANSY radar

- Minamihara et al. (2023)
 - Kelvin-Helmholtz (K-H) billow using Frequency-domain Interferometric Imaging (FII) techniques
 - FII mode : dt= \sim 13 s, dz= \sim 9.4 m
 - Standard mode : $dt = \sim 90$ s, $dz = \sim 150$ m
 - From 10-day observation period, about 70 K-H billows are detected

An approach of estimation of turbulent energy dissipation rates from radiosonde observations based on machine learning

Preliminary results

Motivation

Radar-based estimates: Traditionally used Fine temporal resolution Limitation: Limited availability of radar

observation sites

Radiosonde-based estimates:

Extensive radiosonde observation network

Limitation: Uncertainty of ε estimates

Syowa Station, Antarctic

Numerous simultaneous observations of a VHF radar and radiosondes since October 2015

Purpose of the study:

Estimate $f(\mathbf{x}_{sonde})$ s.t. $f(u_{sonde}, v_{sonde}, \theta_{sonde}) = \varepsilon_{radar}$ using machine learning(ML) approach based on a dataset of simultaneous observations of a radar and radiosondes. In this presentation, the preliminary results of ML-based approach for estimating ε is shown.

So far, we have NOT addressed

- Applicability to other sites (i.e., mid latitudes & tropics)
- Effect of processes related to latent heat release

Data: Radiosondes

Operational radiosonde observations at Syowa Station

- Meisei RS-06G/RS-11G, twice a day (00UT, 12UT)
- Processed data (NOT Raw data)
- *u*, *v*, & *θ*
 - Relative humidity (RH) is not used in the following results.
- From Oct. 2015 to Dec. 2022
- Interpolated at a constant vertical interval of 5 m from data with $\Delta t = 1$ sec.
- Restricted observations where horizontal distance between the radar and radiosondes < 25 km

Data: PANSY radar

Time interval: ~200 s Range resolution: 150 m

4 <u>oblique beams</u> with a zenith angle of 10° are used to avoid the effect of specular reflection.

Estimation of ε from radar spectral width

• $\sigma_{obs}^2 = \sigma_T^2 + \sigma_B^2 + \sigma_S^2 + \sigma_W^2$ (σ_T^2 : Turbulence; σ_B^2 : Beam broadening; σ_S^2 : Shear broadening; σ_W^2 : Time broadening) Beam broadening σ_B^2 is removed using an algorithm developed by Nishimura et al. (2020)

•
$$\varepsilon = 0.46 N w_{std}^2 \left(w_{std}^2 = \frac{\sigma_T^2}{2 \ln 2} \right)$$
 (Sato & Woodman 1982; Hocking, 1983)

In the following, $w_{\rm std}$ averaged over 4 oblique beams are shown.

 $w_{\rm std}$ (standard deviation of vertical wind fluctuations due to turbulence) is used for the ML-based approach

Training dataset: $\{\widehat{w_{std}}(z_i)\}, \{[\widehat{u}(z), \widehat{v}(z), \theta'(z)]_{z_i-1.5\text{km}}\}$

Radar: $w_{std}(z_i)$

- Temporal average: until 1 h after • radiosonde launch
 - Yeo-Johnson transformation •

 $\widehat{w_{\text{std}}} = \begin{cases} \left((w_{\text{std}} + 1)^{\lambda} - 1 \right) / \lambda & \text{if } \lambda \neq 0, w_{\text{std}} \ge 0 \\ \ln(w_{\text{std}} + 1) & \text{if } \lambda = 0, w_{\text{std}} \ge 0 \\ - \left((-w_{\text{std}} + 1)^{2-\lambda} - 1 \right) / (2-\lambda) & \text{if } \lambda \neq 0, w_{\text{std}} < 0 \\ - \ln(-w_{\text{std}} + 1) & \text{if } \lambda = 0, w_{\text{std}} < 0 \end{cases}$

For making the $w_{\rm std}$ distribution approximate normal distribution **Radiosondes:** u, v, θ ($z = [z_i - 1.5 \text{km}, z_i + 1.5 \text{km}]$)

 $3 \text{ km} [600 \times (u, v, \theta)]$

 $\theta' = \theta - \bar{\theta}$

 $(\bar{\theta}: Vertical average over 3 km)$

•
$$(\hat{u}, \hat{v})^{\mathrm{T}} = \mathbf{R}(u, v)^{\mathrm{T}}$$

 $(0 < \phi < 2\pi)$

Rotation angle φ is given randomly for each profile

✓ Data augmentation technique for improving the ML model's generalization ability

Training data: October 2015 - December 2021 Validation data: January - December 2022

Validation data is NOT used during the training process but is utilized for the validation purposes.

cf. Residual Neural Network (ResNet; He et al., 2015) ResNet enables the model with hundreds of layers to train easily and approach better accuracy when the model is going deeper

Results: Radar observation vs. ML prediction

NOTE: Observations in 2022 are not used in the training process

Results: Time-height section of ε in November 2022

Summary

- 1. Turbulent Energy Dissipation Rates (ϵ) Comparison:
 - Used VHF radar data at Syowa Station, Antarctic
 - Compared with radiosonde-based estimation via Thorpe method The ratio of radar-based ε to Thorpe-based ε is significantly small in the altitude range of 1.5–9 km compared to over 11 km.
- 2. Machine Learning (ML) Approach for Estimating ε
 - Developed a ML-based algorithm to estimate ε from the radiosonde observations. ML-based estimates closely resemble those obtained from radar observations
 - Limitation: The current algorithm fails to detect strong, sporadic turbulence events.
 - Applicability to other observation sites?

Prospects

Toward global mapping of turbulent energy dissipation rates

- Improvement the ML-based method
 - Detection of strong turbulence that appears sporadically
 - Validation of the ML-based method using other radars at different latitudes (e.g., MU radar @ Shigaraki, Japan [34.5°N])
 - Generalization ability
 - Assessment of influence of condensation process in the troposphere
- Investigation of which features the ML model is actually looking at to make predictions
- Comparison with other estimation based on observations from aircraft, UAV, special balloon, etc.

Prospects

Toward global mapping of turbulent energy dissipation rates

- Sensitivity test of training data
 - What kind of data (e.g., vertical resolution, θ only, wind only, etc.) are necessary for estimation of ϵ ?
- Another estimation model of radar-based ε (e.g., Luce et al., 2023)
- Application to radiosonde network
 - GRUAN (Global Reference Upper-Air Network) data
 - Well-calibrated data, 30-40 sites
 - BUFR?
 - >1000 sites
 - Various sensors, software versions, vertical resolutions …

GW and turbulence in the mesosphere by the PANSY radar

Sato et al. (2017) : Spectra of winds and momentum fluxes in the summer mesosphere

Kohma et al. (2020; 2021) : Seasonal variation of mesospheric ε

Results: Seasonal variation of ε in 2022

Radar *ε* (2022)

Results: Time-height section of ε in July 2022

28

K-H billows observed by PANSY radar

- Minamihara et al. (2023)
 - K-H billow observations using Frequency-domain Interferometric Imaging (FII) techniques
 - FII mode : $dt = \sim 13$ s, $dz = \sim 9.4$ m
 - Standard mode : $dt = \sim 90$ s, $dz = \sim 150$ m
 - From 10-day continuous observation, 73 K-H billows are detected

```
PANSY FII Echo (dB)
```


Results: ML training process and Validation

30_

Estimation of the energy dissipation rate using spectral width of backscatter echo of atmospheric radar observations

(Sato and Woodman, 1982; Hocking 1983)

Observed Doppler spectral width ($\sigma_{\rm obs}$) of the echo is written as

 $\sigma_{\rm obs}^2 = \sigma_{\rm T}^2 + \sigma_{\rm B}^2 + \sigma_{\rm S}^2 + \sigma_{\rm W}^2$

 σ_T^2 : Turbulence; σ_B^2 : Beam broadening; σ_S^2 : Shear broadening; σ_W^2 : Time broadening The turbulent velocity variance (w_{rms}^2) is

 $w_{\rm rms}^2 = \sigma_T^2/(2\ln 2)$

Using Kolmogorov spectrum $E(k) = C \varepsilon^{2/3} k^{-5/3}$

$$\frac{3}{2}w_{\rm rms}^2 = \int_{k_B}^{k_b} C \,\varepsilon^{2/3} k^{-5/3} dk$$

and assuming $k_B \ll k_b$

$$\varepsilon = C^{-3/2} w_{\rm rms}^3 k_B$$

Using $k_B = N/\sqrt{w_{\rm rms}^2}$, $C^{-3/2} \approx 0.5$, and obs. correction

 $\varepsilon = 0.46 N w_{\rm rms}^2$

Note: k_B is valid for stably stratified atmosphere

Data: Radiosondes

- Operational radiosonde observations at Syowa Station
 - Meisei RS-06G (Raw-PTU), on 00UT and 12UT
 - From Oct. 1, 2015 to Sep. 30, 2016
 - Nighttime data only
 - Interpolated at a constant vertical interval of 12 m from data with 1 second time resolution
 - Potential temperature profiles were reconstructed by replacing the potential temperature with the moist-conservative potential temperature in the cloudy sections (Wilson et al., 2013)
 - Procedure of selection for overturning layers (Wilson et al., 2010; 2011)
- Assuming that $L_T = L_O$ (i.e., c = 1), $\varepsilon_T = L_T^2 N^{*3}$,

where
$$N^* \equiv \left(\frac{g}{\theta} \frac{\theta_{rms}}{L_T}\right)^{1/2}$$
 (Bulk buoyancy frequency; Smyth et al., 2001)

