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Outline
0.  Introduction 

• Estimation of energy dissipation rates in the free atmosphere 

1. Turbulent Energy Dissipation Rates (𝜀) Comparison: 
• Used VHF radar data at Syowa Station, Antarctic 
• Compared with radiosonde-based estimation via Thorpe method

   (Kohma et al., 2019)

2. Preliminary Results of Machine Learning (ML) Approach for 
Estimating 𝜀
• Developed a ML-based algorithm to estimate 𝜀 from the radiosonde observations.
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Introduction
• Turbulent kinetic energy dissipation rates (𝜀):

A variable representing loss rate of turbulent kinetic energy

• Estimation method of 𝜀 in the free atmosphere 
• VHF/UHF radar (e.g., Sato & Woodman, 1982; Hocking, 1983)

• Spectral width method / Power method
• Radiosondes (e.g., Clayson & Kantha, 2008; Wilson et al., 2011)

• Thorpe method
• Aircraft/UAV (e.g., Sharman et al., 2014; Luce et al., 2018; 2023)
• Rocket (e.g., Luebken, 1997; Luebken et al., 2002)
   etc. (e.g., Schneider et al., 2015)
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Introduction
Estimation of 𝜀 by Thorpe method (Thorpe, 1977)

Thorpe Scale 𝐿! : Local overturning length scale 
1. Sort the measured density profile (left panel) into a monotonic profile (right panel)

2. Calculate displacement distance of each sample (𝑑 = 𝑧" − 𝑧#)
3. Obtain 𝐿! as the root-mean-square of 𝑑

Ozmidov Scale 𝐿$ ≡
%
&!

'/)
 : Maximum turbulence length scale in a stratified fluid

Oceanic microstructure observations empirically 
indicated the proportional relation

	 𝐿! = 𝑐𝐿". 𝑐 = 0.25–4  
Using this relation, we obtain

From Thorpe (1977)

𝑑

Sorted density profileMeasured density profile

𝜀 = 𝑐#𝐿"#𝑁$
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Introduction
Uncertainty of 𝜺 from Thorpe method

• The uncertainty of 𝑐 (0.25-4) results in two orders of magnitude uncertainty of 𝜀 (∵ 𝜀 ∝ 𝑐))

• Fritts et al. (2016): c values can vary depending on event
type (e.g., KH instability or wave breaking) and timing

• Schneider et al. (2015): The discrepancy of 𝜀 for 
individual layers is up to a factor of 3000.

⇒ Comparison between radar-based and
Thorpe-based 𝜺 using observations
at Syowa Station, Antarctic (Kohma et al., 2019)

5Fritts et al. (2016)



The program of Antarctic Syowa radar (PANSY radar)

Previous studies using the radar
• GWs in the troposphere-stratosphere: 

(Sato et al., 2014; Minamihara et al. 2018; 2020)

• GWs in the mesosphere: 
(Sato et al., 2017; Shibuya et al., 2017; Shibuya & Sato, 
2019)

• Turbulent energy dissipation rates:
(Kohma et al., 2019; 2020; 2021;
Minamihara et al., 2023)
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System Pulse Doppler radar. Active phased array system
Center freq. 47MHz
Antenna Array consisting of 1045 crossed Yagi antennas  

equivalent to the circular area with a diameter of 
160m (18000m2), light and tough (12.6kg/antenna)

Transmitter 1045 solid-state TR modules
Peak Power : 520kW

Receiver 55 channel digital receiving systems
Ability of imaging and interferometry obs

Power 
consumption

66kW (E-class amplifier)

Peripheral 24 antennas for E-layer FAI observation

Mesosphere-Stratosphere-Troposphere/Incoherent Scatter radar at Syowa Station (69S, 40E) in the Antarctic

The full-system observations with all antenna groups has been operated 
continuously since October 2015.



Data: PANSY radar
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Estimation of 𝜀 from radar spectral widths
• 𝜎%&'# = 𝜎"# + 𝜎(# + 𝜎)# + 𝜎*#  (𝜎!": 	Turbulence;	𝜎#": 	Beam	broadening;	 𝜎$": 	Shear	broadening;	𝜎%" : Time	broadening)

 Beam broadening 𝜎&" is removed using an algorithm developed by Nishimura et al. (2020)

•                               (𝑤'+,# = -!
"

# ./ #
)  (Sato & Woodman 1982; Hocking, 1983)

where 𝑁 is buoyancy frequency

In the following, 𝜀 averaged over 4 off-vertical beams are shown.

𝜀 = 0.46𝑁𝑤-./0

Time interval: ∼200 s
Range resolution: 150 m (troposphere and stratosphere)

For estimation of energy dissipation rates, 
4 off-vertical beams with a zenith angle of 10o 
are used to avoid the effect of specular reflection.



Comparison of 𝜺 
- radar estimation and 

Thorpe estimation

The ratio of radar-based 𝜀 to Thorpe-based 𝜀
is small in z=1.5‒9 km compared to over 11 km. 

Radar estimates 𝜀'

𝜀*/𝜀+

Thorpe estimates 𝜀(
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𝑐 ≡ 𝐿,/𝐿+ =1

Vertical profiles of median 
values of 𝜀 in 2016

There are more recent studies including discussion on 
𝜀 estimation based on Thorpe method.
(e.g., Wang et al., 2019; Luce et al., 2023)

Radar estimates 𝜀- Thorpe estimates 𝜀!



Short-term variation of 𝜺 from the radar
- A time-height section (Sep. 2017) 
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log'. 𝜀 (color), Tropopause (PV=2PVU, black broken contour), 𝑢) + 𝑣) (JRA55, gray contour)



Short-term variation of 𝜺 from the radar
- A time-height section (Sep. 2017) 
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log'. 𝜀 (color), Tropopause (PV=2PVU, black broken contour), 𝑢) + 𝑣) (JRA55, gray contour)

Strong horizontal winds associated with the lower edge of the PNJ

Tropopause folding

Note: Tropopause folding occur frequently along the coast of Antarctica compared to the southern mid latitudes (Kohma et al., 2022)



Short-term variation of 𝜺 from the radar
- A time-height section (Sep. 2017) 

11

log'. 𝜀 (color), Tropopause (PV=2PVU, black broken contour), 𝑢) + 𝑣) (JRA55, gray contour)

Strong surface winds associated with synoptic-scale disturbances

Strong, sporadic turbulence events
near the tropopause level



K-H billows observed by PANSY radar
• Minamihara et al. (2023)

• Kelvin-Helmholtz (K-H) billow using Frequency-domain Interferometric Imaging 
(FII) techniques
• FII mode： dt=〜13 s, dz=〜9.4 m
• Standard mode： dt=〜90 s, dz=〜150 m

• From 10-day observation period, about 70 K-H billows are detected

12



An approach of estimation of turbulent energy dissipation 
rates from radiosonde observations based on machine 
learning
Preliminary results
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Radar-based estimates:
Traditionally used
Fine temporal resolution
Limitation: 
Limited availability of radar 
observation sites

Syowa Station, Antarctic
Numerous simultaneous 
observations of a VHF radar and 
radiosondes since October 2015

Motivation

Radiosonde-based 
estimates:

Extensive radiosonde 
observation network
Limitation:
Uncertainty of 𝜺 estimates
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Purpose of the study:
Estimate 𝑓 𝒙'%/,0 	s.t.

𝑓 𝑢'%/,0, 𝑣'%/,0, 𝜃'%/,0 = 𝜀12,21
using machine learning(ML) approach 
based on a dataset of simultaneous 
observations of a radar and 
radiosondes. 

In this presentation,
the preliminary results of ML-based 
approach for estimating 𝜀 is shown.

So far, we have NOT addressed
• Applicability to other sites (i.e., mid latitudes 

& tropics)
• Effect of processes related to latent heat 

release



Data: Radiosondes
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Operational radiosonde observations at Syowa Station 

• Meisei RS-06G/RS-11G, twice a day (00UT, 12UT)

• Processed data (NOT Raw data)

• 𝑢, 𝑣, & 𝜃 

• Relative humidity (RH) is not used in the following results.

• From Oct. 2015 to Dec. 2022

• Interpolated at a constant vertical interval of 5 m from data 
with Δ𝑡 = 1 sec.

• Restricted observations where horizontal distance between the radar and 
radiosondes < 25 km



Data: PANSY radar
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Estimation of 𝜀 from radar spectral width
• 𝜎%&'# = 𝜎"# + 𝜎(# + 𝜎)# + 𝜎*#  (𝜎!": 	Turbulence;	𝜎#": 	Beam	broadening;	 𝜎$": 	Shear	broadening;	𝜎%" : Time	broadening)

 Beam broadening 𝜎&" is removed using an algorithm developed by Nishimura et al. (2020)

•                               (𝑤'+,# = -!
"

# ./ #
)  (Sato & Woodman 1982; Hocking, 1983)

In the following, 𝑤/01 averaged over 4 oblique beams are shown.

𝜀 = 0.46𝑁𝑤-./0

Time interval: ∼200 s
Range resolution: 150 m

4 oblique beams with a zenith angle of 10o 
are used to avoid the effect of specular reflection.

𝑤/01 (standard deviation of vertical wind fluctuations due to turbulence) is used for the 
ML-based approach



Training dataset: "𝑤!"#(𝑧$) , '𝑢 𝑧 , '𝑣 𝑧 , 𝜃% 𝑧 &!'(.*+,
&!-(.*+,
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Radar: 𝑤'+, 𝑧3
• Temporal average: until 1 h after 

radiosonde launch 
• Yeo-Johnson transformation

For making the 𝑤#$%	distribution
approximate normal distribution

Radiosondes: 𝑢, 𝑣, 𝜃 𝑧 = 𝑧& − 1.5km, 𝑧& + 1.5km  

• Data dimension: 
3 km [600 x (𝑢, 𝑣, 𝜃)]

• 𝜃4 = 𝜃 − �̅� 
(�̅�: Vertical average over 3 km)

• <𝑢, <𝑣 ! = 𝐑 𝑢, 𝑣 ! 

𝐑 = cos𝜑 − sin𝜑
sin𝜑 cos𝜑 	 0 < 𝜑 < 2𝜋

Rotation angle 𝜑 is given randomly for each 
profile

ü Data augmentation technique for improving 
the ML modelʼs generalization ability

1.5 km
1.5 km

𝑧2

𝜃(, 𝑢(, 𝑣(

𝜃)**, 𝑢)**, 𝑣)**

𝜃+, 𝑢+, 𝑣+

⋮

⋮

Training data: October 2015 - December 2021

Validation data: January - December 2022

!𝑤!"# =

𝑤!"# + 1 $ − 1 /𝜆	 if	𝜆 ≠ 0, 𝑤!"# ≥ 0
ln 𝑤!"# + 1 	 if	𝜆 = 0, 𝑤!"# ≥ 0
− −𝑤!"# + 1 %&$ − 1 / 2 − 𝜆 	 if	𝜆 ≠ 0, 𝑤!"# < 0
− ln −𝑤!"# + 1 	 if	𝜆 = 0, 𝑤!"# < 0

Validation data is NOT used during 
the training process but is utilized 
for the validation purposes.



Machine Learning (ML) model

18

• Number of parameters: ∼3,470,000

• Loss function: Mean square error

• Optimization: Adaptive Moment Estimation 
(learning rate: 0.001)

• Mini batch size: 512

Batch Norm

Leaky ReLU

Convolution

Dropout (0.4)

Leaky ReLU

Convolution

Batch Norm

𝑥

Skip connection

Residual block

Fully 
Connected

128 128

1

600@3

Convolution

600@32
300@32

Pool /2

300@32
300@32

300@32
300@32

150@64
150@64

150@64
150@64

75@128
75@128

75@128
75@128

75@128
38@256

38@256
38@256

38@256
38@256

cf. Residual Neural Network (ResNet; He et al., 2015)
ResNet enables the model with hundreds of layers to train easily and approach better accuracy when the model is going deeper

?𝑤/01<𝑢, <𝑣, 𝜃3



Results: 
Radar observation 
vs. ML prediction
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Jan.-Dec. 2022 (validation data period)

Radar estimates
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NOTE: Observations in 2022 are not 
used in the training process



Results: Time-height section of 𝜺 in November 2022
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𝜀 from the radar (dt=12h)

𝜀 from ML-based prediction (radiosondes)
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Results: Annual mean & 
    monthly mean 𝜺 in 2022 
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JAN FEB MAR

APR MAY JUN

JUL AUG SEP

OCT NOV DECRadar estimation 𝜀'
Thorpe estimation 𝜀(



Summary
1. Turbulent Energy Dissipation Rates (𝜀) Comparison: 

• Used VHF radar data at Syowa Station, Antarctic 
• Compared with radiosonde-based estimation via Thorpe method
The ratio of radar-based 𝜀 to Thorpe-based 𝜀 is significantly small in 
the altitude range of 1.5‒9 km compared to over 11 km. 

2. Machine Learning (ML) Approach for Estimating 𝜀
• Developed a ML-based algorithm to estimate 𝜀 from the radiosonde observations.
ML-based estimates closely resemble those obtained from radar 
observations
Limitation: The current algorithm fails to detect strong, sporadic 
turbulence events.
Applicability to other observation sites?

22



23



Prospects
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Toward global mapping of turbulent energy dissipation rates

• Improvement the ML-based method

• Detection of strong turbulence that appears sporadically

• Validation of the ML-based method using other radars at different latitudes (e.g., MU radar @ 
Shigaraki, Japan [34.5oN])

• Generalization ability

• Assessment of influence of condensation process in the troposphere

• Investigation of which features the ML model is actually looking at to make 
predictions

• Comparison with other estimation based on observations from aircraft, UAV, 
special balloon, etc.



Prospects
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Toward global mapping of turbulent energy dissipation rates

• Sensitivity test of training data

• What kind of data (e.g., vertical resolution, 𝜃 only, wind only, etc.) are necessary for estimation of 𝜀?

• Another estimation model of radar-based 𝜀 (e.g., Luce et al., 2023)

• Application to radiosonde network

• GRUAN (Global Reference Upper-Air Network) data

• Well-calibrated data, 30-40 sites

• BUFR?

• >1000 sites

• Various sensors, software versions, vertical resolutions …



GW and turbulence in the mesosphere by the 
PANSY radar
Sato et al. (2017)： Spectra of winds and momentum 
fluxes in the summer mesosphere
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Kohma et al. (2020; 2021)：
Seasonal variation of mesospheric 𝜀

𝜔𝑃4 𝜔 𝜔𝑃5 𝜔 𝜔𝑃6 𝜔

𝜔Re 𝑈 𝜔 𝑊∗ 𝜔 𝜔Re 𝑉 𝜔 𝑊∗ 𝜔



Results: Seasonal variation of 𝜺 in 2022 
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2016 ThorpeRadarML prediction (radiosondes)

Radar 𝜀 (2022)



Results: Time-height section of 𝜺 in July 2022 
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𝜀 from the radar

𝜀 from ML-based prediction (radiosondes)
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K-H billows observed by PANSY radar
• Minamihara et al. (2023)

• K-H billow observations using Frequency-domain Interferometric Imaging (FII) 
techniques
• FII mode： dt=〜13 s, dz=〜9.4 m
• Standard mode： dt=〜90 s, dz=〜150 m

• From 10-day continuous observation, 73 K-H billows are detected

• 参考：KH不安定実験動画 
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Results: ML training process and Validation
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Jan.-Dec. 2022

Loss function (Mean square error) Radar observation vs. ML prediction

Radar observation
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Training data
Validation data log'.(𝑤/01)

NOTE: Observations in 2022 are not 
used in the training process



Estimation of the energy dissipation rate using spectral width of backscatter echo of 
atmospheric radar observations
                                                                               (Sato and Woodman, 1982; Hocking 1983)

Observed Doppler spectral width (𝜎CDE) of the echo is written as
𝜎9:;< = 𝜎=< + 𝜎>< + 𝜎?< + 𝜎@<

𝜎FG: 	Turbulence;	𝜎HG: 	Beam	broadening;	 𝜎IG: 	Shear	broadening;	𝜎JG : Time	broadening

The turbulent velocity variance (𝑤KLEG ) is
𝑤KLEG = 𝜎FG/(2 ln 2)

Using Kolmogorov spectrum E 𝑘 = 𝐶𝜀G/N𝑘OP/N 

3
2
𝑤KLEG = B

Q"

Q#
𝐶 𝜀G/N𝑘OP/N𝑑𝑘

and assuming  𝑘H ≪ 𝑘R
𝜀 = 𝐶ON/G𝑤KLEN 𝑘H

Using 𝑘H = 𝑁/ 𝑤KLEG , 𝐶ON/G ≈ 0.5, and obs. correction
𝜀 = 0.46𝑁𝑤AB;<
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Note: 𝑘7 is valid for stably stratified atmosphere



Data: Radiosondes
• Operational radiosonde observations at Syowa Station 

• Meisei RS-06G (Raw-PTU), on 00UT and 12UT

• From Oct. 1, 2015 to Sep. 30, 2016

• Nighttime data only

• Interpolated at a constant vertical interval of 12 m from 
data with 1 second time resolution

• Potential temperature profiles were reconstructed 
by replacing the potential temperature with the moist-conservative 
potential temperature in the cloudy sections (Wilson et al., 2013)

• Procedure of selection for overturning layers (Wilson et al., 2010; 2011)

• Assuming that 𝐿+ = 𝐿8 (i.e., 𝑐 = 1), 𝜀! = 𝐿+)𝑁∗:,

where	𝑁∗ ≡ -
.
.-./
/0

(/+
 (Bulk buoyancy frequency; Smyth et al., 2001)
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