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AFOSR MURI HYFLITS Program Objectives

—)

Conduct extensive,

geographically distributed
measurements of in-situ
turbulence and particulates
between 20 km and 40 km altitude

Acquire measurements under
normal and very strong
meteorological forcing conditions

Use measurements and modeling
to guide specification of
turbulence and particulate
characteristics and spatiotemporal
statistics as functions of the
underlying meteorology

!
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~ 100 Observations/year

Sites in Colorado, Florida,
Minnesota

Other sites of opportunity (e.g.,
BOLT | in Sweden, BOLT Il at
NASA Wallops)

Convective Storms
Mountain Waves
Jet Stream Shear

Validation of numerical models

Realistic model initialization

Interpretation of sparse

measurements

Predictive models of high-altitude
turbulence likelihood and severity
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HYFLITS Measurement System
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Slowly-descending measurements by
controlled venting of Helium/H2 from a
low-cost weather balloon platform provides
reliable access up to 32km altitude
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» Automatic Balloon Tracking to range > 200 km.
 Raw payload data relayed to a separate (e.g., indoor
Laptop Console for real time display and archival.

« Post-flight processing to calibrate turbulence
measurements and produce additional data products.

University of Colorado
Boulder



Venting Control For Reliable Descent

Balloon Attachment
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Fine Wire Turbulence Instrument

Balloon Gondola Body Prongs and Support Sensor Element
~6m
diameter
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30 km
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Spectral Turbulence Parameter Estimation

HYFLITS Spectral Method
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Turbulence Instrument Calibration Overview

Turbulent variations in Fine Wire Heat Transfer Model Electronllcs Model
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HYFLITS-LITOS Comparison

HYFLITS/LITOS 2018-11-14
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Flight in Germany
on Nov. 14, 2018

Co-located Coldwire,
instruments inside Hotwire

a single gondola /

LITOS ~ HYFLITS

Hotwire

with downward
facing probes

Double balloon
ascent, single
balloon descent
from 27km

Selection criteria
for the LITOS data
is not clear

Remarkable
correspondence
when the recent
calibration
procedure is used
for HYFLITS!
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Per-Flight Turbulence
Data Products

Turbulent kinetic energy dissipation rate
epsilon

Temperature structure parameter C;?
Brunt-Vailaila frequency N (squared),
purple line shows average for the lower
stratosphere

Gradient Richardson number Ri, dashed
line shows critical value of 0.25
Horizontal pendulation velocity of the
balloon payload (H Vel)

Inertial payload descent velocity (D vel)
Filtering at various bandwidths to display
large scale/small scale features of
interest.
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TKE Dissipation Rate
Data Example

* 4 Balloon launches during the BOLT Il
countdown, 1 hour apart, designed to
bracket the BOLT Il descent in time

* Descending measurements began at
approximately T-2 hr to T+1 hr

» Distributions of dissipation rate over the 9-
29 km range are approximately log normal

» Distributions of dissipation rate are very
similar---blue distribution is the fit to the
population of all 14 flights (for reference)

« Some features persist over this 4 hour time
period, e.g., the elevated layer between 12
and 13 km.

* Intense turbulence exists in thin layers
100m to 500m in thickness

« 95% probability contains dissipation rate
variation spanning 4 decades

AIAA SciTech, 2023.



Summary Status

* Over 160 HYFLITS observations conducted as part of the AFOSR MURI
Project in Colorado, Florida, Minnesota, Virginia (Wallops), and Sweden
(Esrange). Data analysis is ongoing.

« Apogee for most of these flights was 32 km, but this is programmable.
 Vertical resolution of epsilon and CT2 is 3 m for 1 sec spectral analysis
records and 3 m/s descent velocity. Other record lengths and descent

velocities can be programmed.

» Low-cost drivers resulted in

« $1500 equipment cost per launch (not including ground station).
» Data is compressed and telemetered. Recovery is expensive!
 Lightweight enough to be FAA “Unregulated”, EU “Light” class

« Small enough for 1 or 2 person launch crew.

« Current NSF/NIPR project will deploy 44 HYFLITS payloads at the Syowa
Antarctic Station in Jan/Feb 2024.

@ University of Colorado
Boulder



