Vaisala Radiosonde RS41 Data Processing

Matti Lehmuskero Vaisala Oyj August 31<sup>st</sup>, 2023



## Content

- Introduction to Vaisala Radiosonde RS41
- Processing for the Measured Parameters
  - Temperature
  - Humidity
  - Pressure Sensor
  - Wind
  - GPS Pressure and Height
- Summary





#### **About the Speaker**



Matti Lehmuskero

Product Line Manager at Vaisala

- M.Sc in Applied Mathematics
- More than 20 years of experience on radiosonde measurements in various roles at Vaisala
- Member of WMO Expert Team on Upper-Air Measurement (ET\_UAM)



#### Introduction to Vaisala Radiosonde RS41





## Vaisala Radiosonde RS41 Family

- Sensors specifically designed and optimized for upper-air measurement
  - Robust, stable
  - SI-traceable calibration
- 400MHz telemetry link
- Easy to use
- Two versions
  - RS41-SG with GPS derived height and pressure
  - RS41-SGP with a silicon pressure sensor



## Vaisala Radiosonde RS41 Family

- Light weight
  - 80/84 grams
- Unwinder
  - 55 meter string, weight 25 grams
  - String strength < 115 N</p>
  - Unwinding speed 0.35 m/s
- String guide sets the sensor boom automatically to correct position





# **Temperature Measurement**





## Vaisala Radiosonde RS41 Temperature Sensor

#### Platinum resistor

- Linear and repeatable sensor over the whole temperature range
- No need for ground correction
- Stabile technology
- Protection from evaporating cooling, no compensation needed for wet bulb
- Short response time, time lag correction
- Small effects of solar and infrared radiation
- Robust

8

SI-traceable calibration





#### **Temperature Sensor Response Time**

- The response time (63.2%) tested in various pressure and ventilation conditions
- Time lag correction is applied to sounding data resulting in negligible residual measurement uncertainty, below 0.02 °C

| Pressure, hPa | Sensor response time<br>63.2% without time lag<br>correction, flow 6 m/s, s |
|---------------|-----------------------------------------------------------------------------|
| 1000          | 0.5                                                                         |
| 100           | 1.2                                                                         |
| 10            | 2.5                                                                         |

#### **Temperature Sensor and Solar Radiation**

- Small size and special coating of the sensor reduce both longwave and short-wave absorption
- Sensor boom design significantly reduces noise in temperature measurement originating from the solar radiation
- The solar radiation correction is applied based on the heat transfer balance mainly affected by incoming radiation and outgoing convective heat
- The uncertainty of the applied solar radiation correction is typically below 0.2°C (k=2) in the troposphere



### **Solar Radiation Correction**

| hPa/deg. | -7.0 | -4.0 | -2.0 | 0.0  | 3.0  | 10.0 | 30.0 | 45.0 | 60.0 | 90.0 |
|----------|------|------|------|------|------|------|------|------|------|------|
| 1000     | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.08 | 0.10 | O.11 | 0.11 |
| 500      | 0.00 | 0.00 | 0.02 | 0.03 | 0.05 | 0.09 | 0.15 | 0.17 | 0.18 | 0.19 |
| 200      | 0.00 | 0.02 | 0.06 | 0.09 | 0.13 | 0.19 | 0.27 | 0.29 | 0.31 | 0.32 |
| 100      | 0.00 | 0.05 | 0.10 | 0.16 | 0.21 | 0.29 | 0.39 | 0.42 | 0.44 | 0.45 |
| 50       | 0.00 | 0.10 | 0.18 | 0.24 | 0.32 | 0.42 | 0.55 | 0.58 | 0.60 | 0.62 |
| 20       | 0.01 | 0.18 | 0.29 | 0.39 | 0.49 | 0.63 | 0.81 | 0.85 | 0.88 | 0.9  |
| 10       | 0.05 | 0.27 | 0.42 | 0.53 | 0.65 | 0.83 | 1.04 | 1.10 | 1.14 | 1.16 |
| 5        | 0.09 | 0.37 | 0.55 | 0.68 | 0.83 | 1.05 | 1.31 | 1.39 | 1.42 | 1.45 |

Radiation correction of Vaisala Radiosonde RS41 temperature measurement at various pressure levels and solar angles at ground level, ventilation speed 6 m/s.

## **Temperature Sensor Check**

- Temperature sensor check
  - Comparing temperature sensor (T) to humidity sensor's temperature sensor (Tu)
- Difference typically less than ± 0.2 °C in office environment, can exceed due to environment
- No correction applied for temperature sensor

Stability after three years, test temperature +20 °C





12

**VAISALA** 

# **Humidity Measurement**





## Vaisala Radiosonde RS41 Humidity Sensor

- Accurate
  - Proven, stable polymer is the active material
    - Low hysteresis, accurate calibration
  - Reconditioning during ground check removes any sensor contamination acquired during storage

#### Integrated temperature sensor

Radiation error compensated

#### Fast response time

- Enables monitoring of the fine structures of clouds
- Sensor element with heating possibility
  - Enables active in-flight de-icing
  - Improved accuracy close to 100 %RH
- SI-traceable calibration

| and the second s |   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 2 |
| 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 |   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |



### **Basic Properties of Relative Humidity Integrated Temperature Sensor**

- No specific solar radiation correction applied
- The equation of saturated water vapor (ITS-90 compatible Wexler's formula by Hardy) used in calculation of relative humidity involves temperatures

$$U_{air} = \left(\frac{e_s(T_{sensor})}{e_s(T_{air})}\right) * U_{sensor}$$

where:

U<sub>air</sub> = humidity of air

U<sub>sensor</sub> = humidity measured by the sensor

Tair = air temperature

T<sub>sensor</sub> = temperature of the sensor

 $e_s(T)$  = saturation vapor pressure of water at temperature T



#### **Reconditioning and Physical Zero Humidity Check**

- Humidity sensor is reconditioned automatically during ground check to restore the factory calibration
  - Removes chemical contaminants originating from packaging or other sources
- The radiosonde measures the deviation of humidity measurement at 0 %RH (physical zero) and fine tunes the humidity measurement accordingly



## **Reconditioning and Physical Zero Humidity Check**

- Difference and correction typically less than ± 0.4 %RH
- The correction is applied based on the measured difference
- Applied already in raw data





### **RS41 Humidity Sensor Stability Test Results**





## **Humidity Time Lag Correction**

- Response time of a polymer-based capacitive humidity sensor is dependent on the ambient temperature
- Time Lag Correction applied to the processed data to diminish errors in cold dynamic conditions

| Condition       | Sensor response time 63.2% without time lag correction, flow 6 m/s |
|-----------------|--------------------------------------------------------------------|
| 1000 hPa, +20°C | < 0.3 s                                                            |
| 1000 hPa, -40°C | < 10 s                                                             |



# Pressure Sensor Measurement (RS41-SGP)





### **Pressure Measurement Using Sensor**

- Direct measurement:
  - Measure the force coming from the weight of the air column above
  - Capacitive measurement
- Vaisala silicon pressure sensor
  - Same sensor as in RS92
  - Excellent stability, wide dynamic range, shock-resistant
  - Revised electronics and calibration for RS41





## **Sensor-Based Geopotential Height (gpm)**

- Similar to deriving pressure from GPS measurements
- The hypsometric equation is solved for change in height (δZ)

$$\frac{\delta P}{P} = -\frac{g \cdot \delta Z}{R_a \cdot T v}$$

P = pressure

Tv = virtual temperature (calculated from radiosonde T, U)

Ideal gas law, hydrostatic assumption

Height is converted into geopotential height



## **Pressure Sensor Ground Check and Correction**

- Pressure sensor is automatically checked against Vaisala barometer module inside RI41-B (option)
- The correction is applied based on the measured difference against reference
- With an external barometer, the reference value can be entered in MW41 user interface



# **GPS** Measurement





## **GPS use in Radiosondes**

#### Wind

- Speed and direction
- Horizontal location
  - Latitude and longitude
- Height
- Pressure calculation
  - Calculated from height, temperature and humidity
- Differential GPS for position calculation



## **GPS Derived Wind**

- Velocity (wind) calculation is based on the satellite carrier frequency changes, that is, Doppler frequencies.
  - Momentary velocity, calculated every one second
  - Provides very high accuracy
  - It is robust against multipath effects and most atmospheric disruptions
- Wind calculation does not use differential corrections
- Wind calculation is independent from height measurement
- Outlier removal, interpolation of missing data



#### Wind Pendulum Filtering Effectiveness of the Algorithm





## **Calculation of GPS Geopotential Height**

- 1. Raw GPS height is expressed relative to the WGS 84 reference ellipsoid model of the Earth
- 2. Converted to MSL height, expressed relative to EGM96 Earth geoid model
- 3. Converted to geopotential height
  - "Height" in TEMP and BUFR





## **GPS Derived Pressure**

- 1. Measurement is initialized with ground station values
  - Pressure from ground station barometer
  - Height of ground station
- 2. Pressure is calculated as an integral from ground to radiosonde height
  - Using height, temperature and humidity of each point

$$\frac{\delta P}{P} = -\frac{g \cdot \delta Z}{R_a \cdot Tv}$$



### **Overview of the RS41 Data Processing Flow**



## **Data Continuity**

- Web page available at Vaisala web page
  - RS41 Data Continuity
  - RS41 vs. RS92 Data Continuity
  - RS92 Data Continuity
- Significant changes in the Vaisala Radiosonde RS41 family and the related ground equipment
- Contains also significant changes that do not have any effect on time series



Link: https://www.vaisala.com/en/sounding-data-continuity



