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Aviation turbulence - Motivations
• Economic cost of ~ $200M/yr
• Accounts for 75% of air carrier accidents
• ~ 15 serious injuries, ~50 minor per year for 

air carriers (reported to NTSB)
• 10% of air carrier turbulence related accident 

resulted in damage to the aircraft
• Causes aircraft fatigue and shorter airframe 

life
• Second leading weather factor affecting air 

traffic controller workload
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Motivations (cont.)
• Incidentally…

– For 2022: 17 injuries, 13 crew or 76% 
(NTSB)

– Est 4500/year
– Most not wearing seat belts…
– Large fraction due to convection

• Kaplan et al. (2005) found 38 of 44 of 
severe turbulence encounters were in 
or near convection

• Wolff and Sharman (2008) found about 
40%

• Requirements for better turbulence 
avoidance from
– FAA 
– ICAO (International Civil Aviation 

Organization)

Extreme turbulence Aeroflot Moscow-Bangkok 
flight 2353 UTC 30 Apr 2017 B777 at FL350 (238 

mb)

Avianca Airlines Lima to Buenos Aires over Andes at 
41,000ft 23 passengers and cabin crew members injured. 5 
June 2016
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Nature of turbulent events
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Aviation turbulence intensity

• Traditionally based on Pilot Reports 
(PIREPs/AIREPs)
– Subjective opinion of pilot

“none”
“light”
“moderate” (>1/2 g) may avoid
“severe” (>1 g) must avoid
“extreme” (>2 g) must avoid

– Depends on the aircraft
• Moderate or greater (MOG) is an 

extremely rare event
– ~ 1%
– “severe” <~ 0.1%

• Not atmospheric intensity metric

6/24

• Better to use energy dissipation rate ε or EDR= ε1/3  m 2/3s-1

– ICAO standard
– Can relate EDR to aircraft loads (peak g ~ σg ~ ε1/3 )
– Convenient scale 0-1
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Aviation turbulence climatology based on 
PIREPS

15 years of FOS pireps (1993-2007)
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Aircraft in situ edr estimates

• NOAA AMDAR archive contains winds, T, qv 
on many aircraft at different observation 
frequencies

• Also have estimates of  EDR from selected 
aircraft (DAL, SWA on AMDAR) – others are 
proprietary

• NCAR archive ~ 2000 ac from DAL, SWA, UAL, 
SWR, AAL; ~5x104 counts/day DAL, SWA

• 1 min sampling rate recording peak and mean 
EDRs but reporting/downlink frequency 
depends on airline 
– Communication costs are an issue
– Airline nervousness about litigation

• Algorithm included on all new Boeing aircraft 
and also available for new Airbus aircraft

• IATA (International Air Transport Association) 
developing database to include all airlines 
(available for a fee!)

Zovko-Rajak et al. MWR 2019 

8/24



© 2019 University Corporation for Atmospheric Research

Aircraft in situ edr estimates – algorithm*
• Accesses ~ 8 Hz avionics data from onboard computer (e.g. 

Aircraft Conditioning and Monitoring System ACMS)
• Compute spectra of w, 80 samples/spectrum
• Assume spectra follows k-5/3  in 0.5-3.5 Hz frequency region
• Sliding 10 sec window with 5 sec overlap 
• Within each window get best fit to k-5/3 (Smalikho 1997)
• -> 12 EDRs/min
• Average and peak EDR levels recorded every minute (~12 

km) from the 12 EDRs
• Rigorous QC applied
• Average and peak are binned at 0.02 EDR intervals

“light” “moderate-severe”

0.5 Hz 0.5 Hz3.5 Hz 3.5 Hz

*Sharman et al. JAMC 2014 

Insitu peak EDR data
upper levels
 ~21 year 61M pts
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In situ edr estimates: caveats

• In situ verification exercises 
– Compare to accelerometer based methods 

from same aircraft
– Simulations
• Compare to von Karman turbulence 

simulation with known EDR and length 
scale (Frehlich et al., JAM 2001)

• Use 2DOF response model to compute 
EDR and compare to input

• Caveats
– Statistics contain an unknown avoidance bias
– Daytime bias
– Does not provide source (MWT, cloud)
– Limited to <45,000 ft (lower stratosphere) 
– Some discrete events may not follow -5/3 

assumed distribution (Rodriguez Imazio, JGR 
2023) 

– Does not have to be perfect – Mainly need to 
distinguish between “smooth” and 
“moderate”

– 0.02 EDR binning is adequate, 0.1 used on 
previous versions
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Other observations

Insitu + AMDAR data coverage
1700-1900 UTC 1 year

• PIREPS
– Must convert to EDR
– Large position uncertainty (50% off by 

more than 23 km)

• AMDAR Ude
– Must convert to EDR (Lee et al WAF 2022)

• ADS-B (Automatic Dependent 
Surveillance- Broadcast)
– Use vertical rate converted to EDR
– High density ~150,000 as of June 2022
– No downlink costs
– Challenging due to low sampling rate 

(~1Hz) and data quantization (e.g. ~0.3 m/s 
vertical rate)

– Current research area at NCAR (L. 
Cornman PI)

11/24

ADS-B coverage (FlightAware)
1 week
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Other observations (cont.)

• HVRRD
– Infrequent (2x day), sparse
– But 

• Does include stratosphere 
• Does provide vertical distribution -> N2 and 

shear
• Which aircraft observations do not

– Coming need for turbulence forecasts in 
Upper Class E air space (>60,000 ft) for 
UAS, military, SSTs, etc.

–  Ko et al. JGR 2023 showed EDR statistics 
were consistent for HVRRD derived EDR 
and in situ aircraft derived EDR in 
overlapping regions:
• Both show occurrence  frequency for  

mean MOG is very small
• Data fit well by log normal
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Aviation Turbulence Forecasting Approach

• Seek operational aviation turbulence forecast model
• “Aircraft scale” eddies that affect aircraft ~ few meters 

to couple km (smaller for UAS)
• Aircraft response is aircraft dependent but this is what 

pilot reports: “light”, “moderate”, “severe”
• CANNOT forecast these levels for every aircraft in the 

airspace
• Instead need to forecast atmospheric turbulence 

measure (i.e. aircraft independent measure)
– We forecast EDR (= ε1/3  m 2/3s-1 ) 
– For reference ICAO standard thresholds (2001) for 

mid-sized aircraft are
• EDR=0.10, 0.3, 0.5 for “light”, “moderate”, 

“severe”, resp.
– We use EDR=0.15,0.22,0.34 m2/3s-1 

 

EDR

PIREP

13/24



© 2019 University Corporation for Atmospheric Research

Approach (cont.)

• No option to directly forecast globally or even regionally at say 
25 m grid spacing operationally

• At lower resolutions current turbulence parameterizations 
don’t work very well, esp. at upper-levels

• Use operational NWP model (e.g., WRF-RAP, HRRR, GFS)
• Compute “turbulence diagnostics” (D) from NWP output
• Assumes linkage between NWP resolvable scales and aircraft 

turbulence scales
• Ds are typically related to model spatial variations
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For example: Ellrod Index=Deformation X shear
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Approach (cont.)

*Sharman et al. Weather & Forecasting 2006
 Sharman and Pearson, J Appl Met Clim, 2016

• Multiple causes require multiple forecasting 
strategies →

• Graphical Turbulence Guidance (GTG)*
• Compute suite of turbulence diagnostics (D) 

converted to EDR (D*)
• GTG = ensemble weighted mean
    GTG =  W1D1* +  W2D2* + W3D3* + ….
• Ws and D*s are turbulence source and altitude 

dependent
• PBL, troposphere, stratosphere separately
• GTG=MAX(GTG CAT + GTG MWT + GTG CIT) 

EDR, all separately available
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Approach (cont.)

*Sharman et al. Weather & Forecasting 2006
 Sharman and Pearson, J Appl Met Clim, 2016

• Multiple causes require multiple forecasting 
strategies →

• Graphical Turbulence Guidance (GTG)*
• Compute suite of turbulence diagnostics (D) 

converted to EDR (D*)
• GTG = ensemble weighted mean
    GTG =  W1D1* +  W2D2* + W3D3* + ….
• Ws and D*s are turbulence source and altitude 

dependent
• PBL, troposphere, stratosphere separately
• GTG=MAX(GTG CAT + GTG MWT + GTG CIT) 

EDR, all separately available
• Operational

– Currently available 24x7 on Operational ADDS 
(http://aviationweather.gov/adds) 

– Uses WRF-RAP NWP model updated hourly
– Global on WAFS (GFS and UKMO), ECMWF 

updated every 6 hrs
ECMWF/GTG EDR at FL290

31 Dec 2011 6-hr fcst valid 18Z

http://aviationweather.gov/adds
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Example GTG diagnostics – GTG/RAP FL390

GTG ensemble mean
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Machine Learning and Probabilistic Approaches
• Machine learning (ML) 

– Avoids some of the calibration issues
– But requires large amounts of 

observational data for training
– Initial results are encouraging (Muñoz-

Esparza et al. 2020, Kaluza)
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Machine Learning and Probabilistic Approaches
• Machine learning (ML) 

– Avoids some of the calibration issues
– But requires large amounts of 

observational data for training
– Initial results are encouraging (Muñoz-

Esparza et al. 2020, Kaluza)

Muñoz-Esparza et al. 2020

ML HRRR/GTG

Current HRRR/GTG
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Machine Learning and Probabilistic Approaches
• Machine learning (ML) 

– Avoids some of the calibration issues
– But requires large amounts of 

observational data for training
– Initial results are encouraging (Muñoz-

Esparza et al. 2020, Kaluza)
• Probabilistic approaches

– Multiple diagnostics as an ensemble 
(MDE)

– Multiple NWP ensembles (FME)
– Time-lagged NWP output  (TLE) 
– Some combination (Shin et al. WAF 2023) 

Muñoz-Esparza et al. 2020

ML HRRR/GTG

Current HRRR/GTG
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Machine Learning and Probabilistic Approaches
• Machine learning (ML) 

– Avoids some of the calibration issues
– But requires large amounts of 

observational data for training
– Initial results are encouraging (Muñoz-

Esparza et al. 2020, Kaluza)
• Probabilistic approaches

– Multiple diagnostics as an ensemble 
(MDE)

– Multiple NWP ensembles (FME)
– Time-lagged NWP output  (TLE) 
– Some combination (Shin et al. WAF 2023) 

MDE 19 diagnostics MDE 77 diagnostics GEFS FME 31 ensembles 5 FME x 19 diagnostics

Muñoz-Esparza et al. 2020

ML HRRR/GTG

Current HRRR/GTG
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GTG verification: sample results

Develop verification metrics from many cases
• Compare observation to GTG surrounding grid points
• Use in situ “peak” EDR (~1 km uncertainty)
• Compute skill statistics to evaluate diagnostics/suite

– MAE, RMSE, bias, ROC curves (Kaluza presentation)…
– Discrimination ability
– Cannot distinguish between NWP and diagnostic errors
– All show deterministic ensemble mean has superior skill to 

individual diagnostics

Observation

●

●
●

●
●

●
●

●

Discrimination ability

Ellrod1 GTG 
ensemble mean

HRRR/GTG 6-hr Forecast Valid 2000 UTC 3 Dec 2019
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Summary

• Semi-empirically based diagnostics can provide operationally 
useful forecasts of CAT and MWT using coarse resolution NWP 
model output
– For aviation, ε1/3=EDR is preferred observation/forecast metric
– Using an ensemble of turbulence diagnostics instead of one diagnostic 

gives more robust statistical performance
– Could also be used with an ensemble of NWP models
– ML techniques show promise
– Ultimately, approach must be probabilistic
– CIT (convectively-induced turbulence ) is challenging -> must nowcast

• Use of in situ EDR data allows more reliable tuning and 
verification

• HVRRD is useful to compare statistics of observational data, 
esp. in stratosphere
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Longer term research needs

• Need better understanding of causes and lifecycles of turbulence
– What are the sources/damping mechanisms?
– What is the role of inertia-gravity waves, breaking, Ri reductions?
– What is the role of the tropopause and tropopause folds?
– How to handle wave-turbulence interactions?
– Establish turbulence current and future climatology (P. Williams talk)
– Need dedicated multiple aircraft field programs (dropsondes + 

penetrations)
• Modeling

– What is “optimal” resolution for turbulence forecasting?
– Need better subgrid turbulence parameterizations in free atmosphere -> ε
– Nested simulations that include large (forcing) scale plus smaller scale 

have been highly successful
• Need more cases based on accidents, elevated edr data
• Need resolution, parameterization, initialization sensitivity studies

Many good PhD topics here!!  For more see Sharman, Lane, Schumann (2017)
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