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Aviation turbulence - Motivations

e Economic cost of ~ $200M/yr

e Accounts for 75% of air carrier accidents

e ~15serious injuries, ~50 minor per year for
air carriers (reported to NTSB)

e 10% of air carrier turbulence related accident
resulted in damage to the aircraft

e Causes aircraft fatigue and shorter airframe
life

* Second leading weather factor affecting air
traffic controller workload




Motivations (cont.)

¥

* Incidentally...

— For 2022: 17 injuries, 13 crew or 76%
(NTSB)
— Est 4500/year

— Most not wearing seat belts...

— Large fraction due to convection
» Kaplan et al. (2005) found 38 of 44 of
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severe turbulence encounters were in ‘41,0 f’A‘sengerS and gabi efew members injured.
or near convection c 28 d i A 4

* Wolff and Sharman (2008) found about , .
40%
 Requirements for better turbulence
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“Aircraft scale turbulence”=“fine-scale”

“turbulent”
Large

eddies smal.lest
WPl

VI %‘;

100s-1000s km

Vertical Acceleration Response to Vertical Wind

Aircraft responds to scales |
from few m - km — Fixed-wing UAS -

B737

> < Mesoscale 0 500 1000 1500 2000
NWP model A (meters)
resolution resolution Courtesy Larry Cornman

NCAR | RESEARCH APPLICATIONS 2019 University Corporation for Atmospheric Research

LABORATORY



Nature of turbulent events
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Aviation turbulence intensity

* Traditionally based on Pilot Reports

(PIREPs/AIREPS)

— Subjective opinion of pilot
“none”
“light”
“moderate” (>1/2 g) may avoid
“severe” (>1 g) must avoid
“extreme” (>2 g) must avoid

— Depends on the aircraft
e Moderate or greater (MOG) is an

extremely rare event
~ 1%
— “severe” <~ 0.1%

* Not atmospheric intensity metric

Turbulence levels on airplanes

Weather factors, such as quick changes in wind speed or direction, sometimes make airplane
rides bumpy. Those factors’ effects on aircraft and the in them define levels of turbulence.

Light -

Moderate

turbulence turbulence
'  Momentary, slight f | More aircraft
{ movement.

— aircraft movement.
1! Passengers may

| feel slight strain
against seat belts.

©  Little difficulty in

walking.

|| Passengers feel strains
|| against seat belts.

Objects are dislodged.
|| Food service, walking

¢_turbulence
4 ry jarring aircraft

© ovement.

| / Passengers forced
l// violently against

7 | / seat belts. Objects

/ tossed about. Food
service impossible/,

oy "/ in serious
¥ *’/jeopardy.

=

e Merrill, USA TODAY

Source: Aeronautical Information Manual, Federal Aviation Administration

 Better to use energy dissipation rate € or EDR= €1/3 m %/3s1

— |ICAO standard

— Can relate EDR to aircraft loads (peak g ~ 0,~ €1/3 )

— Convenient scale 0-1
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Aviation turbulence climatology based on
PIREPS
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15 years of FOS pireps (1993-2007)
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Aircraft in situ edr estimates

* NOAA AMDAR archive contains winds, T, qv
on many aircraft at different observation
frequencies

* Also have estimates of EDR from selected
aircraft (DAL, SWA on AMDAR) — others are
proprietary

 NCAR archive ~ 2000 ac from DAL, SWA, UAL,
SWR, AAL; ~5x10% counts/day DAL, SWA

1 min sampling rate recording peak and mean
EDRs but reporting/downlink frequency
depends on airline

— Communication costs are an issue
— Airline nervousness about litigation

e Algorithm included on all new Boeing aircraft
and also available for new Airbus aircraft

* |ATA (International Air Transport Association) Zovko-Rajak et al. MWR 2019
developing database to include all airlines
(available for a feel)

EDR from 2023-07-01 to 2023-08-01

1000

100

10

Frequency per grid point

NCAR | RESEARCH APPLICATIONS 2019 University Corporation for Atmospheric Research

LABORATORY



Aircraft in situ edr estimates — algorithm*

e Accesses ~ 8 Hz avionics data from onboard computer (e.g.
Aircraft Conditioning and Monitoring System ACMS)

* Compute spectra of w, 80 samples/spectrum

* Assume spectra follows k>/3 in 0.5-3.5 Hz frequency region
e Sliding 10 sec window with 5 sec overlap

* Within each window get best fit to k>3 (Smalikho 1997)

e ->12 EDRs/min

* Average and peak EDR levels recorded every minute (~12

km) from the 12 EDRs Insitu peak EDR data
. . upper levels
* Rigorous QC applied e voar 61M pis
* Average and peak are binned at 0.02 EDR intervals W 3
2 10"k S
12 Vertical Wind Spectra (mean = 0.10, peak = 0.16) 12 Vertical Wind Spectra (mean = 0.21, peak = 0.35) % , ;
102 § 10 ?
. % 10°° 3
10" @\ £ ]
— N s 10* T
o ~ Pz 3
£ 10* = 10% i
10" 1078.0 01 0.2 03 04 05 06 0.7
81/3 25-AUC
10°L
Frequency (Hz) Frequency (Hz) *Sharman et al. JAMC 2014
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In situ edr estimates: caveats

. pe e : — -
* Insitu verification exercises B
— Compare to accelerometer based methods .
from same aircraft
. . 2 A\ /
— Simulations g [ Py /
* Compare to von Karman turbulence a__/ P | N

simulation with known EDR and length
scale (Frehlich et al., JAM 2001)

* Use 2DOF response model to compute
EDR and compare to input

100

* (Caveats n:
- : , .0
— Statistics contain an unknown avoidance bias W
— Daytime bias E o
— Does not provide source (MWT, cloud) £
— Limited to <45,000 ft (lower stratosphere) @
— Some discrete events may not follow -5/3
assumed distribution (Rodriguez Imazio, JGR Ty YR Pl
2023) Input EDR
. 10,000 realizati f
— Does not have to be perfect — Mainly need to Karmanr?jrﬁje'ﬁgz Sviﬁdvﬁg,d
g'St'ggu'Sh,,bEtween “smooth” and with known edr (Sharman et al.
moderate JAMC 2014)

— 0.02 EDR binning is adequate, 0.1 used on
previous versions
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Other observations

0.8

PIREPS

Peak EDR
o
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— Must convert to EDR

— Large position uncertainty (50% off by
more than 23 km)
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AMDAR Ude
— Must convert to EDR (Lee et al WAF 2022)

ADS-B (Automatic Dependent
Surveillance- Broadcast)
— Use vertical rate converted to EDR
— High density ~150,000 as of June 2022
— No downlink costs

— Challenging due to low sampling rate &
(~1Hz) and data quantization (e.g. ~¥0.3 m/s &
vertical rate)

— Current research area at NCAR (L.
Cornman PI)
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Other observations (cont.)

* HVRRD
— Infrequent (2x day), sparse

— But
e Does include stratosphere

* Does provide vertical distribution -> N2 and
shear

* Which aircraft observations do not
— Coming need for turbulence forecasts in
Upper Class E air space (>60,000 ft) for
UAS, military, SSTs, etc.
— Ko et al. JGR 2023 showed EDR statistics |

were consistent for HVRRD derived EDR
and in situ aircraft derived EDR in

overlapping regions:

* Both show occurrence frequency for
mean MOG is very small

* Data fit well by log normal
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Aviation Turbulence Forecasting Approach

* Seek operational aviation turbulence forecast model

e “Aircraft scale” eddies that affect aircraft ~ few meters
to couple km (smaller for UAS)

e Aircraft response is aircraft dependent but this is what

n

pilot reports: “light”, “moderate”, “severe”

 CANNQOT forecast these levels for every aircraft in the
airspace

* Instead need to forecast atmospheric turbulence
measure (i.e. aircraft independent measure)

— We forecast EDR (= €1/3 m 2/3¢1)

— For reference ICAO standard thresholds (2001) for
mid-sized aircraft are

« EDR=0.10, 0.3, 0.5 for “light”, “moderate”,
“severe”, resp.

— We use EDR=0.15,0.22,0.34 m?/3s’
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Approach (cont.)

 No option to directly forecast globally or even regionally at say
25 m grid spacing operationally

* At lower resolutions current turbulence parameterizations
don’t work very well, esp. at upper-levels

e Use operational NWP model (e.g., WRF-RAP, HRRR, GFS)

 Compute “turbulence diagnostics” (D) from NWP output

* Assumes linkage between NWP resolvable scales and aircraft
turbulence scales

e Ds are typically related to model spatial variations

For example: Ellrod Index=Deformation X shear

-

I=DEFS,, S,=|—|, DEF =(D},+D},)"
0z

p. v ou _Ou_ov

Mo oy G oy

NCAR | RESEARCH APPLICATIONS 2019 University Corporation for Atmospheric Research

LABORATORY



NCAR |

Approach (cont.)

Multiple causes require multiple forecasting
strategies =

Graphical Turbulence Guidance (GTG)*

Compute suite of turbulence diagnostics (D)
converted to EDR (D*)

GTG = ensemble weighted mean

GTG= W,D,*+ W,D,*+ W;D;*+ ....

Ws and D*s are turbulence source and altitude
dependent

PBL, troposphere, stratosphere separately

GTG=MAX(GTG CAT + GTG MWT + GTG CIT)
EDR, all separately available
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Approach (cont.)

Current GTG ver 3 Forecast
Turb. Home || GTG Forecast |

Aircraft: Light ~ Plot: Combined ~

Vertical level: 11,000 ~ Forecast time: Ohr-20Z 16 Jul ~

Multiple causes require multiple forecasting
strategies =

Graphical Turbulence Guidance (GTG)*

Compute suite of turbulence diagnostics (D)
converted to EDR (D*)

GTG = ensemble weighted mean
GTG= W,D,*+ W,D,*+ W;D;*+ ....

WSs and D*s are turbulence source and altitude
dependent

GTG - Combined CAT+MTW at 11000 ft. MSL
Q0 hr forecast valid 2000 UTC Sat 16 Jul ZQJ_(i

PBL, troposphere, stratosphere separately

mmm  Eddy Dissipation Rate (EDR)
terrain 1 M

[T d [ TS Ext
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GTG=MAX(GTG CAT + GTG MWT + GTG CIT) v oime aom s

EDR, all separately available
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Example GTG diagnostics — GTG/RAP FL390

20160309_i18_1006_WRF-RR
*404 Elirod2 - remap option 2
06-hr turbulence forecast at FL390 Valid 0000 UTC Wed 10 Mar 2016

N=139 edrt= 0.22 R=10.0 rmse= 0.170 PODY,N,TSS,bias= 0.758 0.509 0.267 2.333

14-JUN-16

i
: Vg
4 .
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20160309 _i18_006_WRF-RR 14-JUN-16

*433 EDRLL - remap option 2
06-hr turbulence forecast at FL390 Valid 0000 UTC Wed 10 Mar 2016
N=139 edrt= 0.22 R= 10.0 rmse= 0.137 PODY,N,TSS bias= 0.333 0.594 -0.072 1.636
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20160309_i18_1006 WRF-RR
*453 wsq/Ri - remap option 2
06-hr turbulence forecast at FL390 Valid 0000 UTC Wed 10 Mar 2016

N=139 edrt= 0.22 R= 10.0 rmse= 0.100 PODY,N,TSS bias= 0.000 0.925-0.075 0.242

14-JUN-16

20160309_i18_{006_WRF-RR
*415 NGM - remap option 2

14-JUN-16

06-hr turbulence forecast at FL390 Valid 0000 UTC Wed 10 Mar 2016
N=139 edrt= 0.22 R=10.0 rmse= 0.120 PODY,N,TSS bias= 0.727 0.660 0.388 1.818
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20160309_i18_1006_WRF-RR
*435 1/RITW - remap option 2

14-JUN-16

06-hr turbulence forecast at FL390 Valid 0000 UTC Wed 10 Mar 2016
N=139 edrt= 0.22 R= 10.0 rmse= 0.155 PODY,N,TSS bias= 0.212 0.604-0.184 1.485

20160309_i18_f006_WRF-RR
*456 SIGW/Ri - remap option 2

14-JUN-16

06-hr turbulence forecast at FL390 Valid 0000 UTC Wed 10 Mar 2016
N=139 edrt= 0.22 R= 10.0 rmse= 0.103 PODY,N,TSS bias= 0.121 0.943 0.065 0.303

20160309_i18_{006_WRF-RR
*422 DEFSQ - remap option 2
06-hr turbulence forecast at FL390 Valid 0000 UTC Wed 10 Mar 2016

N=139 edrt= 0.22 R= 10.0 rmse= 0.138 PODY,N,TSS bias= 0.394 0.557 -0.049 1.818

14-JUN-16

20160309 _i18_f006_WRF-RR

*423 VORTSQ/RI - remap option 2
06-hr turbulence forecast at FL390 Valid 0000 UTC Wed 10 Mar 2016

N=139 edrt= 0.22 R= 10.0 rmse= 0.181 PODY,N,TSS bias= 0.727 0.557 0.284 2.152

14-JUN-16
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439 CTSQ/RI - remap option 2
06-hr turbulence forecast at FL390 Valid 0000 UTC Wed 10 Mar 2016
N=139 edrt= 0.22 R= 10.0 rmse= 0.174 PODY,N,TSS bias= 0.818 0.472 0.290 2,515

20160309 _118_1006_WHF-HH
*441 iawind/Ri - remap option 2
06-hr turbulence forecast at FL380 Valid 0000 UTC Wed 10 Mar 2016

N=139 edrt= 0.2 R= 10.0 rmse= 0.128 PODY,N,TSS bias= 0.879 0.566 0.445 2.273

14-JUN-16
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20160309 _i18_f006_WRF-RR
458 F2D/R - remap option 2
06-hr turbulence forecast at FL390 Valid 0000 UTC Wed 10 Mar 2016

N=139 edrt= 0.22 R= 10.0 rmse= 0.147 PODY,N,TSS bias= 0.788 0.481 0.269 2.455

14-JUN-16

0
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Machine Learning and Probabilistic Approaches

 Machine learning (ML)

— Avoids some of the calibration issues

— But requires large amounts of
observational data for training

— Initial results are encouraging (Mufioz-
Esparza et al. 2020, Kaluza)
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Machine Learning and Probabilistic Approaches

 Machine learning (ML)

— Avoids some of the calibration issues ./ — v
—— RF cumulative

— But requires large amoun’-cs-of N { HRERR/GTG = 618 tos
observational data for training } o
e -0.68
— Initial results are encouraging (Mufioz- £/ g 2
Esparza et al. 2020, Kaluza) i | 043
/ urrent HRRR/GTG 3

5 / f_ ' 0.2

J L B o

000 005 010 015 020 025 030 035 040
EDR [m?/3s71]

Munoz-Esparza et al. 2020
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Machine Learning and Probabilistic Approaches

 Machine learning (ML)
— Avoids some of the calibration issues i m

— But requires large amounts of
observational data for training

—
o

] RF
—— RF cumulative
[ HGTG

204 L H R/GTG ——— HGTG cumulative

T
o
co

i ] -0.65
— Initial results are encouraging (Mufioz- £/ g 2
Esparza et al. 2020, Kaluza) = ot - o3
I / urrent HRRR/GTG 3
e Probabilistic approaches Ml g
51 s F 0.
— Multiple diagnostics as an ensemble / UL I—I-LLD
(MDE) %,00 U.i}S O.il] U.;I.S J()_Erl; ! I_E].:25 0.|30 U..IBS 0,4(?0
EDR [m?/3s71]
— Multiple NWP ensembles (FME) Mufioz-Esparza et al. 2020

— Time-lagged NWP output (TLE)
— Some combination (Shin et al. WAF 2023)
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Machine Learning and Probabilistic Approaches

 Machine learning (ML)

1.0

— Avoids some of the calibration issues =l m

— But requires large amounts of
observational data for training

RF
—— RF cumulative
HGTG

R/GTG — HGTG cumulative |

ot
)

207

i ] -o.sg
— Initial results are encouraging (Mufioz- £/ 2
Esparza et al. 2020, Kaluza) ® ol / ,, 043
e L / urrent HRRR/GTG 3
* Probabilistic approaches LT g
51 s F 0.
— Multiple diagnostics as an ensemble / UL MJ e
(M DE) c(:),[]O E;i]S U.i() 0'15 i)ll2l; . E]iZS 0.|30 U.:BS 0.4(?0
EDR [m?/3s71]
— Multiple NWP ensembles (FME) Mufioz-Esparza et al. 2020

— Time-lagged NWP output (TLE)
— Some combmatlon (Shin et al. WAF 2023)
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Develop verification metrics from many cases

GTG verification: sample results

e Compare observation to GTG surrounding grid points :
o . servation
* Use in situ “peak” EDR (~1 km uncertainty)
» Compute skill statistics to evaluate diagnostics/suite
— MAE, RMSE, bias, ROC curves (Kaluza presentation)...
— Discrimination ability
— Cannot distinguish between NWP and diagnostic errors
— All show deterministic ensemble mean has superior skill to
individual diagnostics
HRRR/GTG 6-hr Forecast Valid 2000 UTC 3 Dec 2019
(b) Heights and Deterministic Mean EDR at FL360 (~227 hPa) e
10'ON LL ' ' S0 T I L E e ‘ N /V i a0
Ellrod1 GTG D L7 AN\ /3 v v &
OF 3 : ' ~N { oy 5
80 6ol ensemble meaf | ?)%‘ﬂm 3? s
<) . . . . A o 7ty Blge % ”""'-\ .
< e Discrimingtion fability -.‘;' .o
g N o
g 40 Wi L i = 4
= ol jf P *
20} ' :ﬁ T e V. =
wic/ L P e
0.00 0.08 0.16 0.24 0.32 0.40 0.00 0.20 0.40 0.60 0.80 1.00 e / o SeverePIREPs_ R
indexX10°® index =g e e
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Summary

* Semi-empirically based diagnostics can provide operationally

NCAR |

useful forecasts of CAT and MWT using coarse resolution NWP
model output
— For aviation, €/3=EDR is preferred observation/forecast metric

— Using an ensemble of turbulence diagnostics instead of one diagnostic
gives more robust statistical performance

— Could also be used with an ensemble of NWP models

— ML techniques show promise

— Ultimately, approach must be probabilistic

— CIT (convectively-induced turbulence ) is challenging -> must nowcast

Use of in situ EDR data allows more reliable tuning and
verification

HVRRD is useful to compare statistics of observational data,
esp. in stratosphere
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Longer term research needs

* Need better understanding of causes and lifecycles of turbulence
— What are the sources/damping mechanisms?
— What is the role of inertia-gravity waves, breaking, Ri reductions?
— What is the role of the tropopause and tropopause folds?
— How to handle wave-turbulence interactions?
— Establish turbulence current and future climatology (P. Williams talk)

— Need dedicated multiple aircraft field programs (dropsondes +
penetrations)

 Modeling
— What is “optimal” resolution for turbulence forecasting?
— Need better subgrid turbulence parameterizations in free atmosphere -> €

— Nested simulations that include large (forcing) scale plus smaller scale
have been highly successful

* Need more cases based on accidents, elevated edr data

* Need resolution, parameterization, initialization sensitivity studies
Many good PhD topics here!! For more see Sharman, Lane, Schumann (2017)
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