Fine-vertical-scale Waves near the Tropical Tropopause: Observations and Impacts M. Joan Alexander and Martina Bramberger (NWRA) Jennifer Haase and Bing Cao (Scripps)

Motivation: Short Vertical Wavelength (λ_z) Tropical Waves ... have important climate influences:

- Tropical waves drive the QBO through selective dissipation of waves below their critical levels (where $\lambda_z \rightarrow 0$)
- Climate model QBOs are far too weak in the lower stratosphere, and as a result QBO teleconnections to surface climate are weaker than observed.

Recent observational studies emphasize:

• Dissipation closer to critical levels will give larger forces:

Force =
$$-\frac{1}{\rho(z)}\frac{\delta Flux}{\delta z}$$

Hertzog [2020]

Motivation: Short Vertical Wavelength (λ_z) Tropical Waves

...have important climate influences:

Waves modulate tropopause layer cirrus clouds and ice particle precipitation. [Jensen et al. 2017]

Short λ_z waves enhance dehydration of stratospheric air with a cooling effect on the planet. [Kim and Alexander 2016]

Atmospheric Waves Help Cool Our Planet

A new method makes a direct estimate of the impact of atmospheric waves on water vapor concentrations in the stratosphere.

Source: Geophysical Research Letters

Motivation: Short Vertical Wavelength (λ_z) Tropical Waves ... have important climate influences:

Waves modulate tropopause layer cirrus clouds and ice particle precipitation. [Jensen et al. 2017]

Short λ_z waves enhance dehydration of stratospheric air with a cooling effect on the planet. [Kim and Alexander 2016]

Waves enhance dehydration by lowering the cold point temperature of the tropical tropopause. [Kim and Alexander 2015]

Atmospheric Waves Help Cool Our Planet

A new method makes a direct estimate of the impact of atmospheric waves on water vapor concentrations in the stratosphere.

Source: Geophysical Research Letters

Tropical Waves in Radiosondes

What types of waves most affect Cold Point Temperature?

[Kim & Alexander, 2015]

Analyses of Tropical Gravity Waves

First step is always removing a "background" to isolate gravity wave perturbations

- Vertical filtering does not isolate gravity waves in the tropics!!!
- Time filtering can isolate low vs high frequencies (radiosondes)
- Combinations of time+space (satellite methods)

Some considerations:

- There is no clear scale break between large and small wave periods.
- Vertical scale does not discriminate between global-scale/low-frequency waves and small-scale/higher-frequency gravity waves.
- Dispersion equations relate spatial wavenumbers to intrinsic frequency
- There are differences between *intrinsic* (ω_i) and ground-based (ω_0) frequency, particularly in lower stratosphere

$$\omega_i = \omega_0 - \boldsymbol{U} \cdot \boldsymbol{k}$$

Satellite Examples of Space-Time Analysis

Wavenumber vs Frequency: COSMIC Temperatures

Tropical Wave Modes (lat,z): HIRDLS Temperatures

Many occurrences of global scale waves with $\lambda_z \sim 4$ km (the minimum observable)

[Alexander & Ortland 2010]

[S. P. Alexander et al. 2008]

Strateole-2:

Contact: albert.hertzog@lmd.polytechnique.fr

Exploring the tropical UTLS with long-duration balloons

- 30s measurement cadence observes the full tropical wave spectrum
- TSEN Instrument Measurements: u, v, T, z, p
- Radio-Occultation Sensor (ROC) on one balloon gave high resolution T(z)

Strateole2 Balloons: 30s Resolution & Multi-month Duration: Full Tropical Wave Spectrum

Tropical Wave Dispersion Relations

Wheeler & Kiladis [1999]:

- Cloud-top brightness
 temperatures
- Data analyzed for ground-based frequencies and tropospheric vertical

wavelengths.

- Balloons rather uniquely observe intrinsic frequency!
- Family of curves for different λ_z .

Figures from Kiladis et al. 2009

Balloon-borne Radio-Occultation (BRO) measurements 2019-2020 Strateole-2

- Balloons drifted eastward with QBO flying at two levels: ~65 and ~50 hPa
- This talk: STR1 balloon carrying "ROC" Radio-Occultation profiler observations of low-frequency
- tropical waves in the lower stratosphere.

Bramberger et al. [2022]

GPS receiver is inside the neutral atmosphere.

- ✤ Dry T Profiles retrieved only below the balloon z~10-20 km
- Vertical resolution is a bit higher than COSMIC2 LEO satellite RO

Balloon-borne RO Temperature Profiles

from the Strateole-2 Superpressure Balloon Flight 12/6/19-2/1/20

 Data recovered from Iridium link is mostly from the area in boxes, 17-day continuous part in Indian Ocean/SW Asia, some from East Pacific near South America.

Balloon in situ measurements

30 sec sampling resolves gravity waves and equatorial wave modes

Flight Level S-Transform Total Energy Spectrum

20day Kelvin Wave and 3-4day Inertia-Gravity Wave

BRO Tropopause Tangent Points DOY: 340-357 = Dec 6-23, 2019

> 40 profiles/day

BRO Temperature Profiles 2019 Time-height series of BRO anomalies (K) with periods < 30 days

Tropical Waves Dispersion Relation Curves

Tropical Waves Dispersion Relation Curves

 \rightarrow Identifies these two modes as Kelvin waves

Tropical Waves Dispersion Relation Curves

BRO Temperature Profiles 2019 Shorter period residuals

- Kelvin Wave removed as background shows many other wave signals present for future time-series and 3D analysis
- Other Strateole-2 low-frequency Inertia-Gravity Wave observations (Bramberger talk)

Key Points

- Tropical waves with extreme λ_H / λ_z aspect ratios approaching values 10,000 : 1 are observed in the tropics (also Bramberger talk)
- Long λ_{H} , short λ_{z} , longer period waves are likely important drivers of the QBO in the lowermost stratosphere where model QBOs are weak
- Vertical high-pass filtering followed by traditional radiosonde analysis methods would mischaracterize Kelvin waves as high-frequency zonally-propagating gravity waves
- Long-duration balloon observations combining measurements in the intrinsic reference frame with vertical profiling are a powerful tool for characterization of tropical waves and their climate impacts