NOAA's QuickPUNCH Project

Don Schmit (University of Colorado/CIRES) Gabe Dima (CIRES), Jeff Johnson (CIRES), Mark Miesch (CIRES), George Millward (CIRES)

NOAA Organization

National Environmental Satellite, Data, and Information Service

NOAA

National Weather Service

Space Weather Prediction Center

National Centers for Environmental Information

Office of Projects, Partnerships, and Analysis (Space Weather Office) Office of System Architecture and Advanced Planning

NOAA Organization

- Produces space weather forecasts
- Develop forecasting tools

Space Weather Prediction Center

- Develop and maintain data pipelines
- Calibration and trending

National Centers for Environmental Information

Office of Projects, Partnerships, and Analysis (Space Weather Office)

NOAA

 Forward looking analysis on NOAA capabilities and assets

NOAA needs a Coronagraph

- Currently, SPWC is solely reliant on SOHO/LASCO/C3 data for CME identification and tracking
- Given the critical nature of coronagraph data in the forecasting system, NOAA has been active in preparing for post-SOHO era (current estimate is LASCO will turn off Dec 2025)
- Since 2018, NOAA has been preparing to commission their own coronagraphs
 - Two instruments, built by NRL, on GOES-U (geostationary) and SWFO-L1 (Sun-Earth Lagrange Pt 1)

Gap Mitigation Strategy

- Internal NOAA study in 2019 identified critical gaps in space environment observations
- How else can we detect CMEs?:
 - Using NOAA assets: off-point one of the Solar UltraViolet Imagers (GOES-R series)
 - Using NASA assets: STEREO-A and **PUNCH**
 - Looking ahead: Aditya or ESA Vigil

What is QuickPUNCH?

- Study to produce "proof of concept" deliverables: can SWRI deliver data to SWPC that meet operational requirements?
 - Processing Latency
 - Data reliability
 - Calibration quality
 - Compatibility with SWPC tools

 Contingency: The bottleneck is the downlink schedule. If SWPC needed to rely on PUNCH data, is there a way to reduce the total data latency and meet reliability requirements?

QuickPUNCH Data Specification

• NFI

• 5.4-32 Rs FOV, 1024x1024 px, 4 minute cadence, total brightness

• WFI mosaic

• 5.4-80 Rs FOV, 1024x1024 px, 8 minute cadence, total brightness

Data are produced by the PUNCH Data Center

- Latency to not exceed 2 hour from data arriving at ground station
- Data are not proprietary to NOAA

How is coronagraph data used at SWPC?

- Stack of images converted to fixed difference movie in CAT tool
- The CME shape in each image is fit to a cone
- A linear fit is calculated for the radial expansion of the cone
- Output: eruption start time, lat./lon. of CME base, expansion angle, velocity
- CME parameters are feed into a heliosphere model (WSA-Enlil) to propagate CME to Earth: impact or no-impact?
- Heliosphere models are updated every two hours and propagate ten days into the future

CAT (CME Analysis Tool)

9

Where do we go from here?

- Can WFI data be a high-impact tool for forecasting?
- Can polarization information be exploited for forecasting? (Matt West)
- Observations are leading the models. What is the next detail of CME (or solar wind) structure that is important to incorporate into forecasting models?

- Forecasters get results 2 hours after run initiated
 Starts with the most recent photospheric magnetogram
- Currently GONG zero-point corrected
- Soon to be replaced by 12-member ADAPT/GONG ensemi
- WSA model for ambient wind
- PFSS/SCS B

21 5 Rsun

- semi-empirical expressions for v, density, T, P
- o IC for Enlil as Lower BC, then relaxed for 10 tays
- CMEs superposed on ambient wind
 - Spherical pressure pulses at 21.5 Rsun based on CAT Conesit
- Propagated with Enlil to 1AU

