Onboard Deep Learning for Efficient Small Satellite Reflectance Retrievals and Downlink

Sarvesh Garimella and David Ryglicki

MyRadar

Portland, OR

vesh@myradar.com

Background: MyRadar's Use Case & Mission

- Mission
 - Democratizing environmental intelligence in a changing climate
 - Nowcasting + Alerts
- HORIS CubeSat Platform
 - RGB camera, hyperspectral imager, thermal sensor
 - Low-power AI chipset
 - Constellation with < hourly revisit
 - Faster detection -> alerting

Methods: Alerting from Orbit

- Orbital sensor platforms provide rich datasets
- Data outpaces processing ability, operational cadence
- Can we apply AI techniques to overcome bottlenecks and send alerts from orbit?
 - Reflectance Retrievals
 - Detection/Segmentation
 - Compression/Downlink

<mark>my</mark>radar[™]

Methods: AI Reflectance Retrievals

- Comparing Empirical Line Method to RT calculations
- Atmospheric vertical structure and aerosol profiles required
- Lookup tables without downlink requirement
- Deep learning to constrain **aerosol profile** from RGB context sensor
- N-class classification of aerosol scene using transfer learning

Snapshot design

Methods: AI Compression

- Convolutional autoencoders for compression tasks
- Self-supervised training on input and reconstructed spectra/images
- 2D and 1D networks compared
- Focus on 1D network for better memory characteristics and better literature performance (Kuester et al., 2020)

Methods: Al Super Resolution

Model	Filters	Blocks	Size, weights	Size, serialized
EDSR	128	32	42 MB	126 MB
DSen2	64	12	3.5 MB	11 MB
Res-U-net	[32, 64, 128, 256, 512, 1024]	3 per filter group	207 MB	620 MB

- Multiple architectures designed for potential failovers
- MAE and MAE + DSSIM were used as loss functions, with a weight of 0.25 on DSSIM
 - DSSIM = 1.0 SSIM (Wang et al. 2004)

- 256 x 256 subdomains extracted from Sentinel-2 20-m RED (Band 4) and NIR (Band 8a)
- Batch size of 64, shuffle size of 96
- Learning rate: 1.0e-4 exponentially decay to 1.0e-5 over 200 epochs
- Early stopping based on validation loss (10 epochs of no improvement)

Methods: Alerting Duty Cycle

- Uplink (atmospheric profile + aerosol profile specific) lookup tables
 - Apply sensor transfer function: simulation → sensor bandwidths and QEs
- Context sensor in "scan mode" for scenes of interest
- Switch to "active mode" to collect radiance spectra + context image
 - Normalize measured spectra with simulated white reflectance spectrum
- Perform spectral classification to determine alert / no alert
- Downlink encoded bitmap/flags for detected features

Results: "Flat Sat" Tests

- 30 ms inference time using 4 mJ
- 30 GOPS with AI core drawing 13mW maximum power for 63 ms (capture+inference), using ~1 mJ
- Total energy consumption for acquiring and processing one image ~ 7 mJ.
- 1 Hz operation for 1 hour was 25 J.

Results: Context and Compression Al

- AI-assisted aerosol profile lookup (64x64x3 pixel tiles) on low power AI chipset
 - 14-layer SimpleNet V2
 - 98% 6-class accuracy
 - 373k params, 14 MB on disk
 - 0.3 W, 9.2 s inference (slow, layer I/O)
 - 7-layer "Simpler" Net
 - 97% 6-class accuracy
 - 55k params, <1 MB on disk
 - <1 mW, 15 ms

- Lightweight (57k params) 1D fully-Convolutional Autoencoder
 - <150 ms compression/inference on single core CPU with 256x256x145 datacubes
 - MAE of 6E-4 DN
 - 18:1 dB SNR suitable for sub-pixel classification (Kuester et al., 2020)
 - 100-150 ms for acquisition of a similar datacube
 - Near real-time compression

Results: Compression Power Spectra

- Average power spectral density for real and reconstructed spectra
 - Low wavenumber power = broadscale features
 - High wavenumber power = to finer-scale spectral features
- Preservation of spectral power distribution

Results: Super Resolution Al

Model	MAE	MAPE	<u>PSNR</u>	<u>SSIM</u>	<u>SRE</u>	TVAR
EDSR, MAE	0.042	102950	27.246	0.696	19.478	2019
EDSR, MAE + DSSIM	0.041	105235	27.422	0.719	19.723	2330
DSen2, MAE	0.037	45956	28.043	0.713	20.026	2948
DSen2, MAE + DSSIM	0.038	55472	28.122	0.737	20.682	3243
U-net, MAE	0.036	42084	28.748	0.748	20.956	2295
U-net, MAE + DSSIM	0.036	52753	28.773	0.772	20.843	2770

- PSNR = Peak Signal-to-Noise Ratio
- SSIM = Structural Similarity
- SRE = Signal to Reconstruction Error Ratio (Lanaras et al. 2018)
- TVAR = Total Variation

Results: Super Resolution Al Output

Discussion/Conclusions

- Many use cases where improving latency / time resolution is more important than improving spatial resolution: wildfires, defense
- Al techniques can enable low-power real-time onboard processing
- Address bottlenecks for compute and downlink to allow generating alerts from remote sensing data at the edge
- Requires further laboratory studies for duty cycle determination + tests in the field and on orbit

Future Work

- Refine AI performance on flight model hardware
- Diversify training data collected
- Late 2024 launch of science pathfinders
- Orbital training data collection
- Alerting demonstration

Acknowledgements

- SPIE, Organizers
- NOAA SBIR NA23OAR0210337
- Paul Kocyla, Pradipta Dey, Portland State University, Purdue University

Backup Slides

Data Details: Sentinel-2

- Acquisition
 - GeoJSONs built on geojson.io
 - SentinelSat API to filter for cloud cover <1% for all dates/times in 2021
 - Georgia, Montana, South Dakota, NM-CO border, northern CA, central IN, and central FL (testing)

Data Details: Sentinel-2

- Super-resolution
 - 256 x 256 subdomains extracted from 20-m RED (Band 4) and NIR (Band 8a); scaled by 0.5 and 99.5 percentiles
 - Following techniques in Lanaras et al. (2018; Gaussian blurring, areaaveraging downsampled NIR 20-m resolution to 80-m resolution
 - Matches our sensors' differences (4X)
 - ~38K training pairs, ~8K validation pairs, ~4K testing pairs; training subjected to additional augmentation (rotation, flipping)

Data Details: Sentinel-2

- Spectral Classification
 - ESA WorldCover 10m dataset (Zanaga et al. 2022)
 - 11 land-use categories
 - Remapped to 20-m Sentinel-2 TIFFs using GDAL (nearest neighbor)
 - 50,000 random points extracted per scene (~2 million total), limited to boreal summer
 - 80/20 training/testing split; stratified shuffle technique employed to maintain distribution
 - Additional variables derived: NDVI, GEMI, MSAVI, NDWI, NDBI, MNDWI, ANDWI, EVI
 - Four-fold stratified split grid search cross-val for determining best model, optimizing for *balanced accuracy*.

Methodology: Al architecture, SISR (cond.)

Methodology: Al architecture, SISR (uncond.)

Methodology: SISR details

- Three models (1 uncond., 2 cond.)
 - Enhanced Deep Residual Network (EDSR; Lim et al. 2017)
 - Unconditioned
 - Uses (c) Residual Block
 - DSen2 (Lanaras et al. 2018)
 - Conditioned
 - Derivative of EDSR
 - Uses (c) block with additional Scaling parameter
 - U-Net (Ronneberger et al. 2015)
 - Conditioned
 - Res-U-net, where convolutions are replaced with (a) residual blocks
 - Strided down; nearest-neighbor up

Methodology: SISR model comparison

Model	Filters	Blocks	Size, weights	Size, serialized
EDSR	128	32	42 MB	126 MB
DSen2	64	12	3.5 MB	11 MB
Res-U-net	[32, 64, 128, 256, 512, 1024]	3 per filter group	207 MB	620 MB

- Multiple architectures designed for potential failovers
- MAE and MAE + DSSIM were used as loss functions, with a weight of 0.25 on DSSIM
 - DSSIM = 1.0 SSIM (Wang et al. 2004)

- Batch size of 64, shuffle size of 96
- Learning rate: 1.0e-4 exponentially decay to 1.0e-5 over 200 epochs
- Early stopping based on validation loss (10 epochs of no improvement)

(b) lowres

(c) bilinear

(d) bicubic

(e) dsen2_mae

(f) dsen2_mae_and_dssim

(g) unet_dssim

(h) edsr_with_dssim_pixshuff

