

Optical Flow Applications for Meteorological Satellite Imagery and Cloud Nowcasting Techniques

Matthew King, Jason Apke¹, Steven Miller^{1,2}, and Randy Chase¹ With contributions from Imme Ebert-Uphoff¹, John M. Haynes¹, Yoo-Jeong Noh¹

- ¹ Cooperative Institute for Research in the Atmosphere (CIRA), Fort Collins, CO
- ² Department of Atmospheric Science, Colorado State University, Fort Collins, CO

DoD Cloud Post-Processing and Verification Workshop

September 13th 2023

Introduction/Motivation

- CIRA's OVERCAST research (sponsored by U.S. Navy Office of Naval Research)
 - Aims to develop an advanced global 3D cloud structure analysis based on current satellite remote sensing capabilities
- 3D Cloud Nowcasting is a key milestone for OVERCAST research
- For DoD operations, having accurate cloud locations is important for aircraft hazards & visibility
- Mission success for Intelligence, Surveillance, and Reconnaissance (ISR) operations is particularly vulnerable to cloud-free-line-of-sight (CFLOS) requirements to surface targets

Background on past methods 0

- Advection Methods
 - Air Force Advect Cloud Model advects cloud moisture parameter (Storch and McDonald, 2001)
 - Multi-sensor Advection Diffusion nowcast (MADCast) WRF model advection/diffusion ((Jiménez et al. 2022)
 - CIRA-Cast cloud grouping based on properties with forward advection (Miller et al. 2018)
- Optical Flow Nowcasting
 - Radar Nowcasting of Precipitation and Winds Radar-based optical flow nowcasting (Bechini and Chandrasekar 2017)
 - Cloud Nowcasting involving Optical Flow 2D Piecewise optical flow field (Kellerhals et al. 2022)
- Machine Learning Convolutional Neural Networks
 - 2d Cloud Nowcasting using Neural Networks (Berthomier et al. 2020) and (Kellerhals et al. 2022)
 - NWP Cloud Forecast Corrections (Nguyen et al. 2023)

3D Cloud Advection Methods

- Investigated several methods of advection methods
 - All used interpolated GFS wind data
 - Filled cloud according to CLAVR-x cloud top height and cloud base height
- Found backward advection method produced best nowcast
 - Can use this as a benchmark
 - Follows method in Advected Layer Precipitable Water (ALPW) product (Gitro et al, 2018)

Figure 1. 3D advection cloud nowcasting example using Clouds from AVHRR Extended (CLAVR-x) as initial cloud state. Nowcast is 3 hrs in total with 15 min steps.

Validation of Advection Methods

- ALPW method does marginally better than persistence
- Issues with Advection
 - Incorrect trajectories
 - Computationally expensive
 - Doesn't form/dissipate clouds
- Address first two issues with optical flow
- Possibly address formation/dissipation with ML

U

Figure 2. Probability of Detection (POD), Critical Skill Index (CSI), False Alarm Rate (FAR), and Fraction Skill Score (FSS) plots for previous nowcast example for all pressure levels.

Validation of Advection Methods

- ALPW method does marginally better than persistence
- Issues with Advection
 - Incorrect trajectories
 - Computationally expensive
 - Doesn't form/dissipate clouds
- Address first two issues with optical flow
- Possibly address formation/dissipation with ML

Naval

U

Figure 3. Fraction skill score evaluated following GFS trajectories to analyze skill for change in cloud fraction over time of nowcast.

Optical Flow

• Optical Flow (OF) Definition:

"The distribution of apparent velocities of movement of brightness patterns in an image" (Horn and Schunck 1981)

- Like a different channel on an imager, OF provides unique context of an image scene for a variety of users
 - > NWP
 - > Forecasters
 - Machine Learning/AI
- OF is an important tool for 3D cloud diagnosis and nowcasting with multiple satellite imagers!
- OF computed here using the Optical flow Code for Tracking, Atmospheric motion vector, and Nowcasting Experiments (OCTANE; Apke et al. 2022;

https://github.com/JasonApke/OCTANE)

Figure 4. GOES-16 Ch-o2 0.64 μ m imagery plotted with optical flow winds (white barbs) over a low-pressure system of the coast of VA/NC.

Figure 5. (*Left*) GOES-16 Day-Cloud Phase enhancement (from 0.64, 1.6, and 10.3 μm imagery) shown with (*Right*) Dense optical flow colored by wind speed with brightness indicating the 0.64 μm reflectance (The Speed Sandwich product).

OF Temporal Correction & Nowcasting

With backwards advection technique.

OF motions can be used to infer where clouds reside at future time-frames

- A convenient assumption -> The OF motions in the grid are continuous (no discontinuities)
 - True for radar data

٠

- False for visible/infrared satellite imagery!
- If the optical flow field were continuous, a backwards advection scheme could be used to infer the future cloud field
- With piecewise fields, it is instead better to use optical flow warping techniques which account for time-related changes to the optical flow field!
 - Note, another option would be to use objective analysis on each layer observed in the image (computationally expensive)

OF Temporal Correction & Nowcasting

Office of Naval Research Science & Technologi Connecting Models and Observation

- One such warping technique is to first infer the optical flow field at a time of interest, then use that field to move the imagery
 - We use a method by Baker et al. 2011, includes occlusion reasoning
- This type of warping can be used to approximately increase imagery temporal resolution (MesoAnywhere)
- Can also be used to match scan times between multiple imagers
 - Useful for composites and image stereoscopy
- The forward warping process can be used to nowcast imagery using only optical flow!

Figure 7. Schematic of optical flow temporal interpolation.

Citation: Baker, S., D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, 2011: A database and evaluation methodology for optical flow. *Int. J. Comput. Vis.*, **92**, 1–31, doi:10.1007/s11263-010-0390-2.

The MesoAnywhere Product

5 min

Mesosector 2

Native ImageryMesoAnwhere (all 30-Sec)GOES-16 OCTANE MesoAnywhere 0.64-μm Imagery 21 Mar 2022 20:01:16 UTC

GeoColor computed downstream of interpolation, meaning city lights/terminator will not contain artifacts!

Let's Zoom In

OF Nowcasting Example

Truth Imagery

GOES-16 10.3 μm Aug 02, 2023 05:10:20 UTC

Optical Flow Nowcasted Imagery

UNET Results

- 18 Mar 2023 example
 - 1 hour nowcast
 - Prediction in 5 min increments
- Trained on 1000 samples of GOES-16 CONUS CLAVR-x data
 - 5 min and then 10 min data
- Possibility that architecture is causing under-fitting
- Will need to assess better architecture that keeps time dimension separated longer

True Cloud Top Height

Figure 8. Early UNet results using predictions as input for subsequent predictions

Summary and Future Work

- This presentation covered the optical flow and machine learning research at CIRA to nowcast clouds
 - Optical flow and advection methods do well in areas of where clouds only, but do poorly in areas of cloud formation and dissipation
 - In regions where clouds only advect, optical flow and NWP wind-based nowcasting methods perform well

• Both techniques struggle where formation and dissipation occurs, which we are attempting to solve with Machine Learning

Future Work:

- OCTANE and other products will be used for feature engineering on data inputs for cloud-nowcasting products, and identification of feature importance
- Will explore value of different machine learning architectures (i.e. Time distributed layers, Diffusion, LSTM, Transformers)

Acknowledgements

Funding provided by the Multidisciplinary University Research Initiative (MURI) Grant Noo014-16-1-2040, & ONR Award # No0014-21-1-2112 **Citations**

- Apke, J. M., and J. R. Mecikalski, 2021: On the Origin of Rotation Derived from Super Rapid Scan Satellite Imagery at the Cloud-Tops of Severe Deep Convection. *Monthly Weather Review*, https://doi.org/10.1175/MWR-D-20-0209.1.
- ---, Y.-J. Noh, and K. Bedka, 2022: Comparison of Optical Flow Derivation Techniques for Retrieving Tropospheric Winds from Satellite Image Sequences. Journal of Atmospheric and Oceanic Technology, 39, 2005–2021, https://doi.org/10.1175/JTECH-D-22-0057.1.
- Bechini, R., and V. Chandrasekar, 2017: An Enhanced Optical Flow Technique for Radar Nowcasting of Precipitation and Winds. Journal of Atmospheric and Oceanic Technology, 34, 2637–2658, https://doi.org/10.1175/JTECH-D-17-0110.1.
- Berthomier, L., B. Pradel, and L. Perez, 2020: Cloud Cover Nowcasting with Deep Learning. 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA), 1–6.
- Gitro, C. M., and Coauthors, 2018: Using the Multisensor Advected Layered Precipitable Water Product in the Operational Forecast Environment. J. Operational Meteor., 06, 59–73, https://doi.org/10.15191/nwajom.2018.0606.
- Ionescu, V.-S., G. Czibula, and E. Mihuleţ, 2021: DeePS at: A deep learning model for prediction of satellite images for nowcasting purposes. Procedia Computer Science, 192, 622–631, https://doi.org/10.1016/j.procs.2021.08.064.
- Jiménez, P. A., J. Dudhia, G. Thompson, J. A. Lee, and T. Brummet, 2022: Improving the cloud initialization in WRF-Solar with enhanced short-range forecasting functionality: The MAD-WRF model. Solar Energy, 239, 221–233, https://doi.org/10.1016/j.solener.2022.04.055.
- Kellerhals, S. A., F. De Leeuw, and C. Rodriguez Rivero, 2022: Cloud Nowcasting with Structure-Preserving Convolutional Gated Recurrent Units. Atmosphere, 13, 1632, https://doi.org/10.3390/atmos13101632.
- Miller, S. D., M. A. Rogers, J. M. Haynes, M. Sengupta, and A. K. Heidinger, 2018: Short-term solar irradiance forecasting via satellite/model coupling. Solar Energy, 168, 102–117, https://doi.org/10.1016/j.solener.2017.11.049.
- Nguyen, C., J. E. Nachamkin, D. Sidoti, J. Gull, A. Bienkowski, R. Bankert, and M. Surratt, 2023: Machine Learning–Based Cloud Forecast Corrections for Fusions of Numerical Weather Prediction Model and Satellite Data. Artificial Intelligence for the Earth Systems, 2, e220072, https://doi.org/10.1175/AIES-D-22-0072.1.
- Storch, S. J. and David G. McDonald, 2001: Improvements to Air Force Cloud Forecast Model, Advect Cloud. 11th Conference on Satellite Meteorology and Oceanography https://ams.confex.com/ams/pdfpapers/24275.pdf

Thank You For Listening!

For additional questions, contact: Matt King, Jason Apke <u>matt.king@colostate.edu</u>, <u>jason.apke@colostate.edu</u> 3925A West Laporte Ave. Fort Collins, CO 80523-1375