Impact of assimilating all-sky microwave radiances on cloud forecasts, evaluated using ABI/AHI radiances

Jake Liu, Junmei Ban, Ivette H. Banos, Kate Fossell, Byoung-Joo Jung, Chris Snyder

Prediction, Assimilation and Risk Communication (PARC) Section Mesoscale & Microscale Meteorology (MMM) Laboratory National Center for Atmospheric Research

DoD Cloud Post-Processing and Verification Workshop September 13-14, 2023, Boulder

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

MPAS-A: MMM's new-generation global/regional-unified atmospheric model built on unstructured grids (First public release in 2013)

MPAS-A: Model for Prediction Across Scales - Atmosphere

Allow variable-resolution mesh; Same source code for all applications

MPAS-JEDI: relatively-new data assimilation system for MPAS-A, based on JEDI (Joint Effort for Data assimilation Integration) framework

- Been developed since 2018 by NCAR/MMM+JCSDA, with a USAF-funded project named 'PANDA-C' (Prediction AND Assimilation for Cloud)
- Can do both deterministic analysis and ensemble analysis using various DA techniques
- Analysis directly done on MPAS unstructured grid for uniform or variableresolution mesh, global or regional mesh
- The first MPAS-JEDI tutorial is next week here, with the latest public version-2 release in June!

All-sky satellite radiance DA with MPAS-JEDI

- So far mostly using CRTM, though could also use RTTOV in the future
- Mixing ratios of (cloud water, cloud ice, rain, snow, graupel) as part of analysis variables
- Situation-dependent observation error models (similar to that in Ivette's talk)
- Variational Bias Correction

Input needed for cloudy radiance simulation by CRTM

- Temperature and moisture profiles
- Surface properties
- Layer water content of hydrometeors (liquid cloud, ice cloud, rain, snow, graupel)
- Effective radius of hydrometeors (with assumed particle size distributions of a microphysics scheme)
- Cloud fraction: diagnosed by Xu&Randall scheme in the MPAS-A model
- Pre-computed look-up table of single-scattering properties for hydrometeors
 - Also with assumed particle size distributions, not necessarily consistent with those of a microphysics scheme
 - Particle shape assumption: spherical vs. non-spherical

Microwave Instrument Characteristics					_
Channel	Freq.(GHz)	Channel	Freq.(GHz)	PeakWF (hPa)	
AMSU-A 1	23.8	ATMS 1	23.8	Surface	Window channels(1-3,16,17)
AMSU-A 2	31.4	ATMS 2	31.4	Surface	sensitive to the surface and
AMSU-A 3	50.3	ATMS 3	50.3	Surface	hydrometeors
		ATMS 4	51.76	Surface	
AMSU-A 4	52.8	ATMS 5	52.8	850	
AMSU-A 5	53.596	ATMS 6	53.596	700	
AMSU-A 6	54.4	ATMS 7	54.4	400	
AMSU-A 7	54.94	ATMS 8	54.94	250	
AMSU-A 8	55.5	ATMS 9	55.5	200	Temperature sounding channels
AMSU-A 9	fo=57.29	ATMS 10	fo=57.29	100	(surface to upper stratosphere)
AMSU-A 10	fo±0.217	ATMS 11	fo±0.217	50	
AMSU-A 11	fo±0.3222±0.048	ATMS 12	$fo \pm 0.3222 \pm 0.048$	25	
AMSU-A 12	fo±0.3222±0.022	ATMS 13	$fo \pm 0.3222 \pm 0.022$	12	
AMSU-A 13	fo±0.3222±0.010	ATMS 14	$fo \pm 0.3222 \pm 0.010$	5	
AMSU-A 14	fo±0.3222±0.045	ATMS 15	$fo \pm 0.3222 \pm 0.045$	2	
AMSU-A 15	89.0	ATMS 16	88.2	Surface \implies	Window channel
MHS 1	89.0				
MHS 2	157.0	ATMS 17	165.5	Surface 🗪	Window channel
MHS 5	190.31	ATMS 18	183.31 ± 7.0	800	
		ATMS 19	$183.31 {\pm} 4.5$	700	Humidity sounding channels
MHS 4	183.31 ± 3.0	ATMS 20	183.31 ± 3.0	500	(surface to upper troposphere)
		ATMS 21	183.31 ± 1.8	400	
MHS 3	$183.31{\pm}1.0$	ATMS 22	$183.31{\pm}1.0$	300	

4 month-long global DA cycling experiments

- Benchmark: Conventional obs + clear-sky AMSU-A temperature channels from 6 satellites (noaa-15/18/19, metop-a/b, aqua) + clear-sky MHS water vapor channels from 4 satellites (noaa-18/19, metop-a/b)
- Benchmark + all-sky AMSU-A window channels over water from 5 satellites (noaa-15/18/19, metop-a/b)
- Benchmark + all-sky ATMS T/Q-channels over water/land and window channels over water from 2 satellites (NPP, noaa-2019)
- Benchmark + all-sky AMSU-A + all-sky ATMS

Common configurations in all 4 experiments

- 30km-60km dual-resolution hybrid-3DEnVar
- 80-member ensemble input produced from MPAS-JEDI's own EDA cycling at 60km mesh
- Cycling period: 04/15 05/14, 2018, 6-hourly cycling
- 30km 5- or 6-day free forecast at each 0000 UTC
 - Mesoscale_reference physics suite with the one-moment WSM6 microphysics scheme
- Compare CRTM-simulated brightness temperatures from model forecasts with super-obbed ABI/AHI brightness temperatures

Impact of all-sky AMSU-A radiance DA vs. benchmark verify against AHI data

Observations vs. Day-1 forecast

Observations

ABI channel 13 BTs (degree C) valid at 00 UTC 9 May 2018

Impact of all-sky ATMS radiance DA vs. benchmark verify against AHI data

NCAR UCAR

Impact of all-sky ATMS radiance DA

Day-2 forecast

RMSE reduction

Impact of all-sky ATMS radiance DA vs. benchmark verify against ABI channel 13

Day-1 forecast bias as a function of cloud fraction from model (CFx) and observation (CFy)

Day-1 forecast RMSE % change by adding ATMS as a function of CFx and CFy

Impact of adding all-sky ATMS above all-sky AMSU-A verify against AHI data

Concluding Remarks

- Cloud fraction mis-match between model and obs seems to be the largest error source when verifying cloud forecast in ABI/AHI brightness temperature space
- All-sky microwave radiance DA is overall effective to reduce cloud forecast errors, especially over tropical regions
- Larger improvement expected by using more advanced DA method (e.g., hybrid-4DEnVar) and higher model resolution, and assimilating more satellite data
- Future considerations:
 - Cloud fraction as a model prognostic variable and also an analysis variable in all-sky DA
 - For 2-moment microphysics scheme, also analyze number concentration of hydrometeors
 - Combination of DA and other techniques (e.g., AI/ML) could be more powerful

