

Machine Learning Models for Systematic **Errors in Different Cloud Regimes**

Chuyen Nguyen**, Jason Nachamkin*, David. Sidoti*, Jacob Gull***, Adam. Bienkowski⁺, Matthew Fernandez⁺⁺, and Melinda. Surratt^{*}

*Naval Research Laboratory, Monterey, CA **General Dynamic Technology (GDIT)

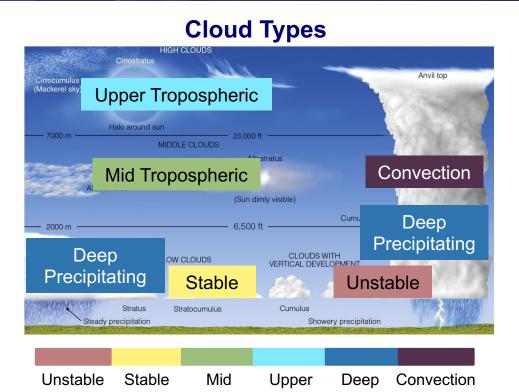
***DeVine Consulting

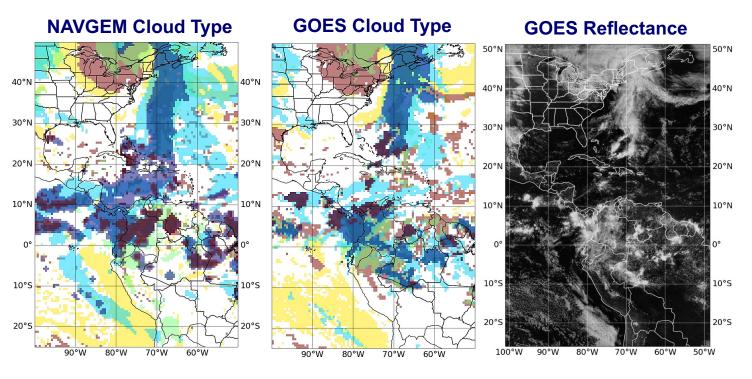
*University of Connecticut

⁺⁺ SAIC

GOES data: NASA Langley Research Center (LARC) Cooperative Institute for Research in the Atmosphere (CIRA)

Motivation





Challenge:

- Difficult to identify specific cloud types and locations
- Cloud forecasts: geographical location and cloud property errors.
- · At the same atmospheric level, forcing mechanisms for different cloud types vary significantly
- In 3D field, different cloud types can be captured in a same pixel

Input variables based on physics

Methodology

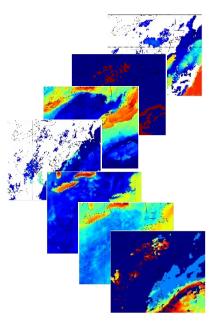
Feature Fusion

Feature Selection

Preprocessing

ML Implementation

NWP forecast COAMPS NAVGEM



GOES

5 years of data (2018-2022) Daily UTC 12, 15, 18, and 00 Upper tropospheric

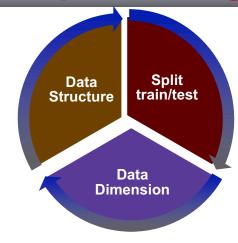
Mid tropospheric

Stable

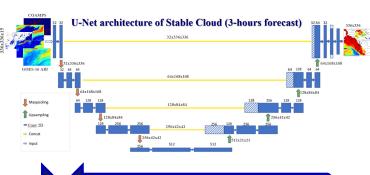
Unstable

Deep Precipitating

Convection

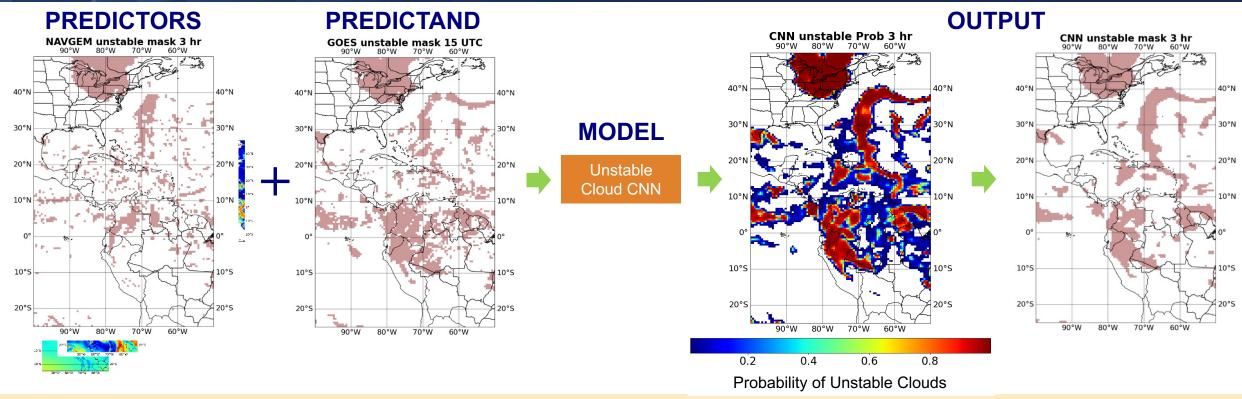


- Data dimension
 CNN: 2D images
- Data structure Samples, row, column, features
- Split training/testing:
 - 2018-2020 Training
 - 2021 Validating
 - 2022 Independent testing



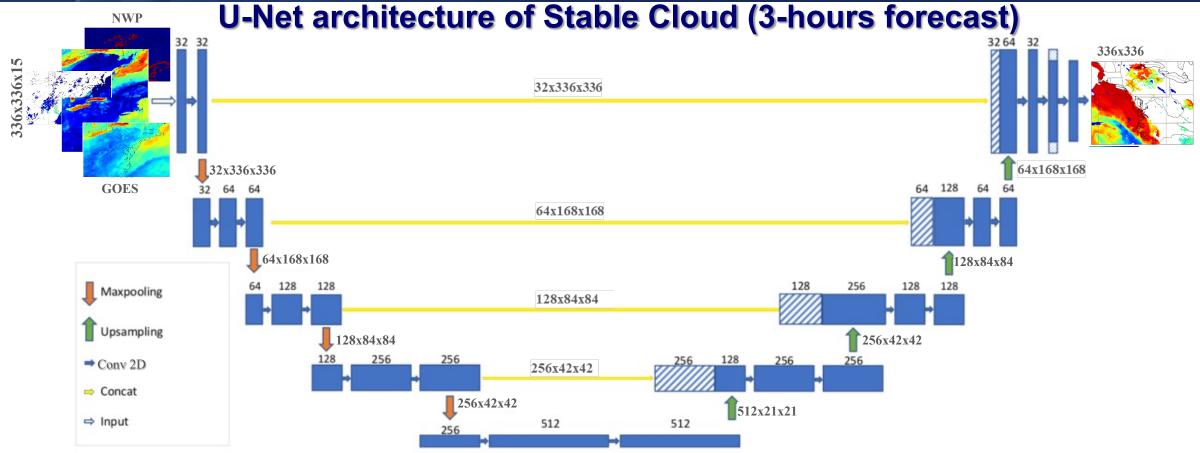
- Model structures
 - Hyper Parameter
 - Evaluate test results
 - Identify ML errors
- Improve ML model
 - Finalize ML model

Methodology



- 3-12 hour forecasts for Stable, Unstable, Mid-Tropospheric, Upper Tropospheric, Deep Precipitating, and Convective clouds
- Separate convolutional neural network (CNN) models for each cloud type and forecast hour
- 24 machine learning models, each with its own set of predictors and predictands

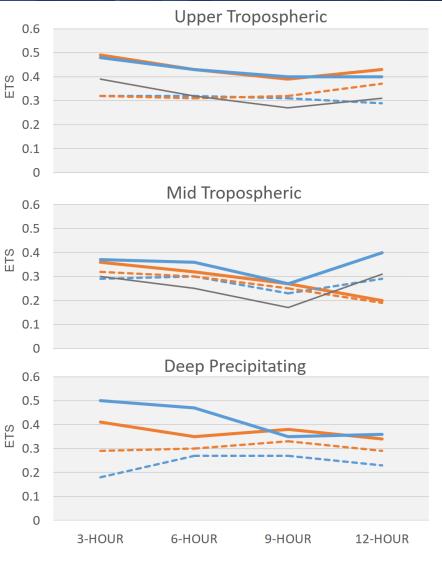
Unet-CNN Architecture

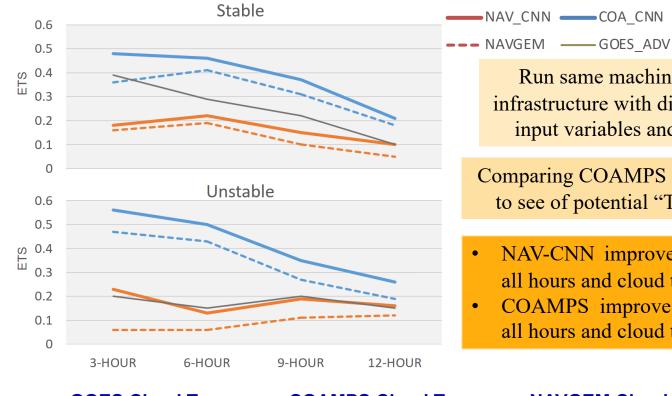


The model comprises an encoder and a decoder pathway, with skip connections between the corresponding layers.

- 3 × 3 convolution kernels, followed by a max-pooling operation of 2 × 2 and stride of 2
- Loss function: binary_cross entropy
- Optimizer: Adam
- Activate function: Sigmoid

NAVGEM – COAMPS Comparison



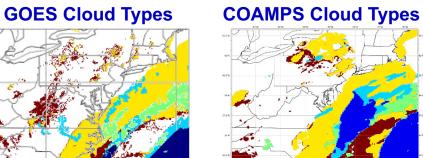


Run same machine learning infrastructure with different set of input variables and grid size.

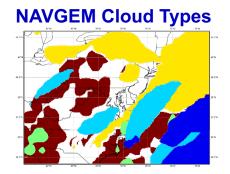
NAV CNN ——— COA CNN ——— COAMPS

Comparing COAMPS and NAVGEM to see of potential "Transferable"

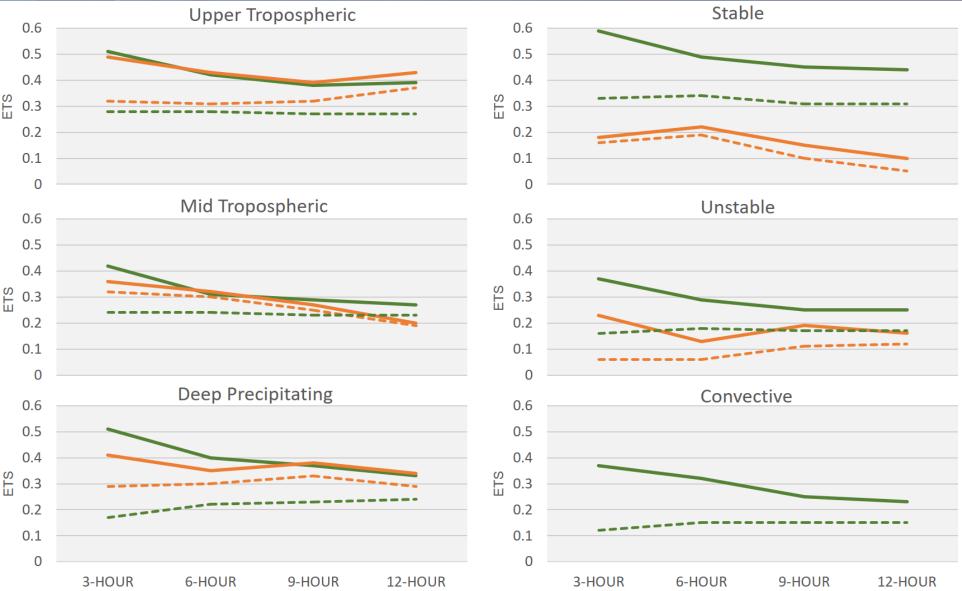
- NAV-CNN improve ETS score of all hours and cloud types
- COAMPS improve ETS score of all hours and cloud types



Unstable Stable



Overall ALFS Performance



- Latest ALFS predictions on the larger grid.
- ALFS improvements are larger.
- NAVGEM stable, unstable forecasts are better.
- Coarse resolution results in smoother features that are easier to correct.

ATL_CNN

----VA_CNN

---VA_NAV

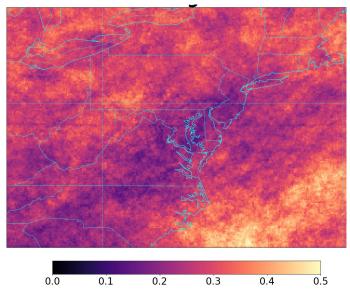
-- ATL_NAV

7

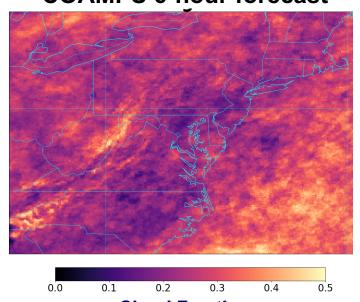
Seasonal Effects: Warm Season

Upper tropospheric: Mean Cloud Fraction

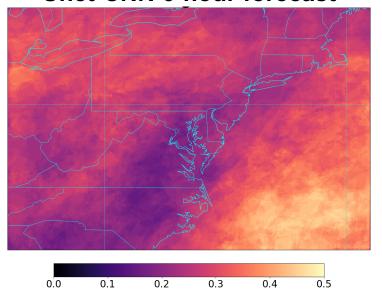
5 Apr. – 13 Oct



COAMPS 6-hour forecast



Unet-CNN 6-hour forecast



Cloud Fraction

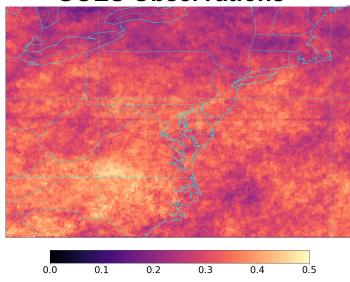
	ETS	Bias	POD	FAR
COAMPS	0.28	0.83	0.54	0.35
Unet-CNN	0.43	0.92	0.69	0.25

Unet-CNN improved warm season high cloud forecast significantly

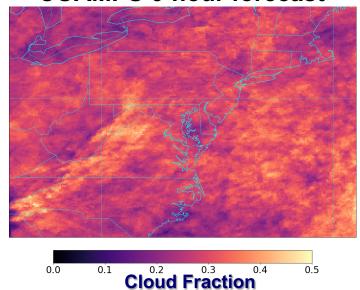
Seasonal Effects: Cold Season

Upper tropospheric: Mean Cloud Fraction

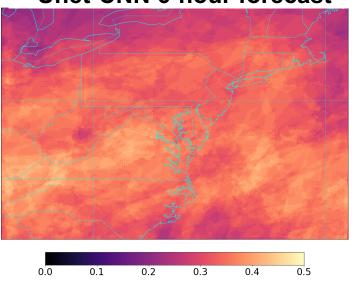
14 Oct. - 14 Apr.



COAMPS 6-hour forecast



Unet-CNN 6-hour forecast

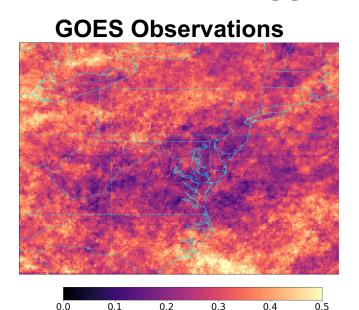


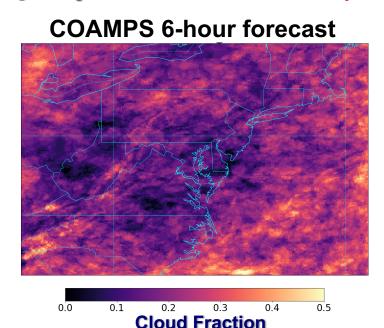
	ETS	Bias	POD	FAR
COAMPS	0.46	0.90	0.69	0.23
Unet-CNN	0.61	1.06	0.85	0.20

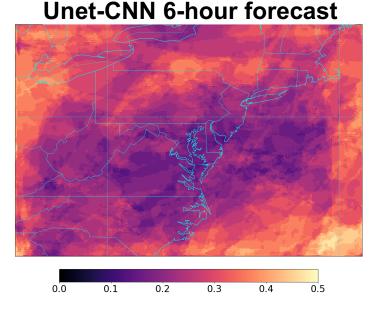
Improved overall forecast quality: ETS, bias, and correct hits Reduced false alarm rates

Systematic Error: Extreme under predicted

Upper tropospheric: COAMPS (Bias ≤ 0.75)







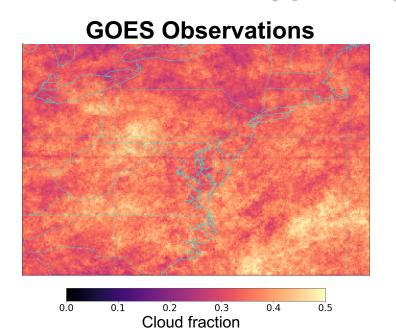
	ETS	Bias	POD	FAR	
COAMPS	0.24	0.66	0.44	0.33	
Unet-CNN	0.37	0.88	0.63	0.28	

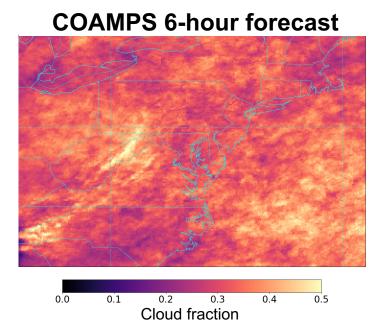
Improved overall forecast quality:

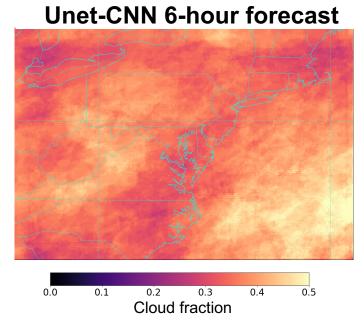
- Improve ETS, bias, and correct hits
- Reduce false alarm ratio

Systematic Error: Typical well-predicted

Upper tropospheric: COAMPS (0.75 < Bias < 1.5)





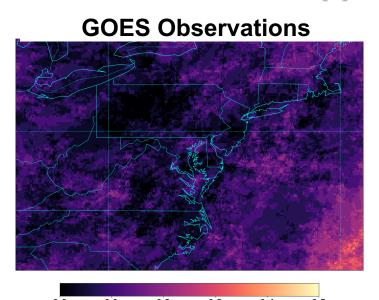


	ETS	Bias	POD	FAR
COAMPS	0.35	0.94	0.66	0.29
Unet-CNN	0.46	1.05	0.78	0.26

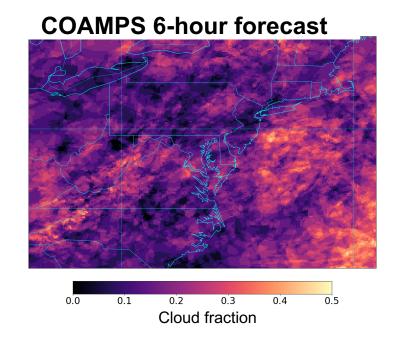
Improved overall forecast quality: ETS, bias, and correct hits

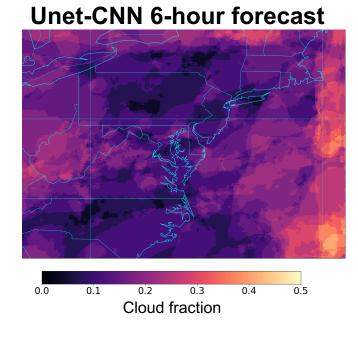
Systematic Error: Extreme over predicted

Upper tropospheric: COAMPS (Bias ≥ 1.5)



Cloud fraction





	ETS	Bias	POD	FAR
COAMPS	0.19	2.02	0.60	0.70
Unet-CNN	0.24	1.89	0.66	0.65

Small improvement of overall forecast quality, when COAMPS data contain extreme Bias ≥ 1.5

Next Steps

The initial results indicate that ML application: Unet-CNN able to capture the complexity, improve "systematic errors", and "transferable"

LSTM – Unet CNN

Incorporate: Temporal information

Broad-LSTM –Unet CNN Ensemble

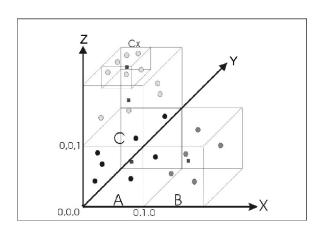
Solving image scale problems and regional errors

Identify:

- Cloud top base
- Cloud base height

Boundary for 3D cube

3D cloud forecast ML system



EXTRA Slides

Highlights of the Approach

Low Unstable

- Unstable boundary layer (CCL, LCL)
- Weak inversion (EIS)
- Surface-based (cloud base ≤ 4 km)

Low Stable

- Stable boundary layer (CCL, LCL)
- Moderate Strong inversion(EIS)
- Surface-based (cloud base ≤ 4 km)

Mid Tropospheric

- Cloud top between 4 and 8 km
- LWP > 25 g m² if ice cloud (GOES)
- LWP > $350 \text{ g m}^2 \text{ if top} > 8 \text{ km}$

Deep Precipitating

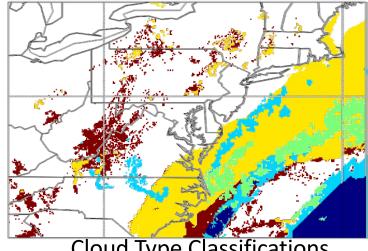
- Cloud top ≥ 9.5 km
- Within 100 km of rainfall ≥ 3 mm/hr
- Cloud area ≤ 10 times size of rain area

Upper Tropospheric

- Cloud top ≥ 8 km
- Thin ice clouds (GOES)

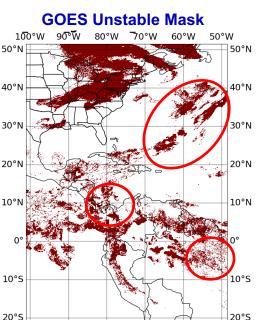
8 May 2018 1500Z

GOES-16 Infrared Satellite Image

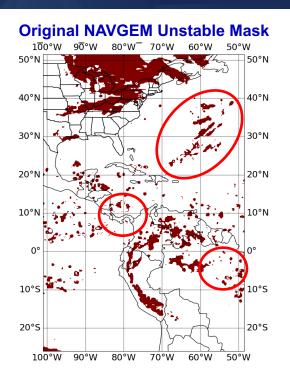


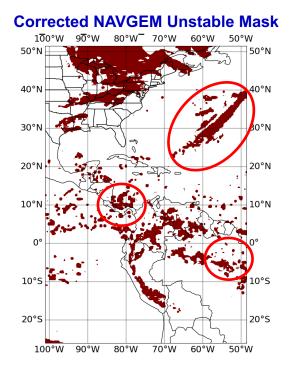
Feature Engineering

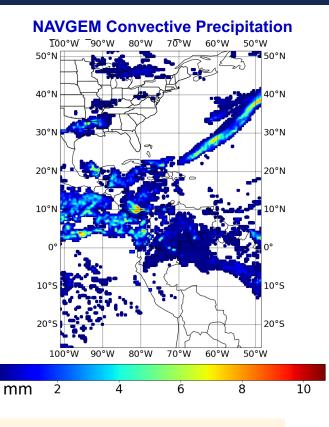
Example: May 8th 2020 at 15 UTC



80°W 70°W 60°W







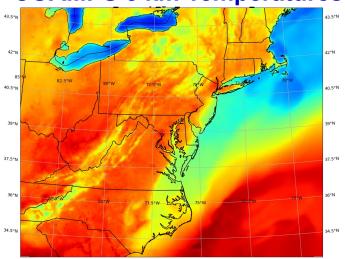
- NAVGEM Forecasts are used as one of input variable.
- Convective parameterization scheme overstabilizes the boundary layer, Stable and unstable clouds are incorrectly labeled in the forecasts.

- Applied a correction augment algorithm: the stable and unstable probabilities.
- Improve/ correct NAVGEM bias
- Corrected NAVGEM cloud mask better correlated with GOES observation

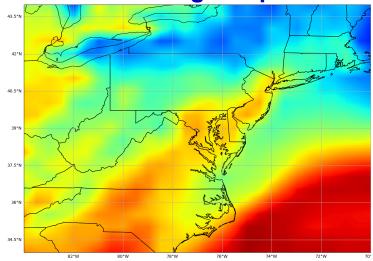
Feature Engineering

Example: May 8th 2020 at 15 UTC

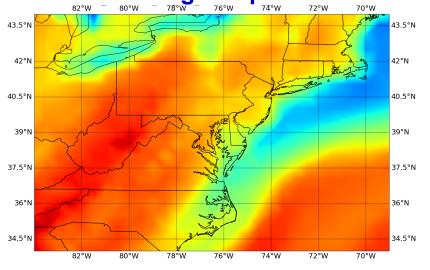
COAMPS 5 km Temperatures



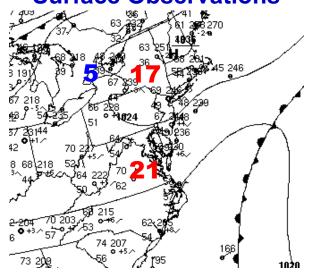
NAVGEM 0.5 Deg Temperatures



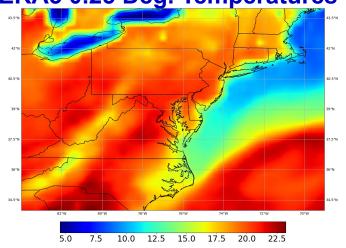
GFS 0.5 Deg Temperatures



Surface Observations



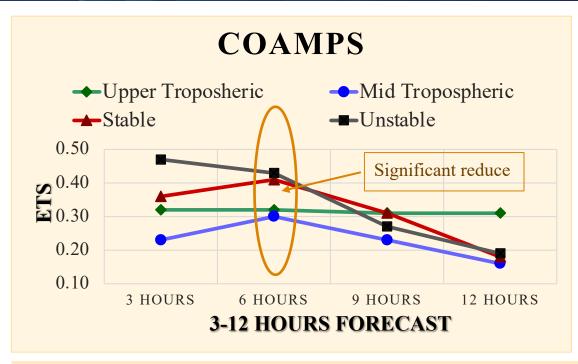
ERA5 0.25 Deg. Temperatures

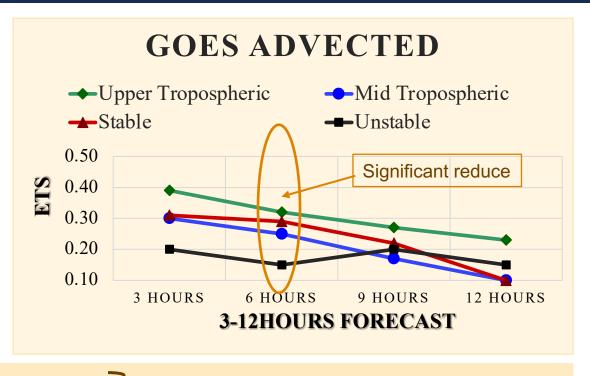


- Accurate temperatures is important input feature
- Expert of the field Jason Nachamkin evaluate all resources: NAVGEM, GFS, ERA5
 - ✓ Major errors in NAVGEM
 - ✓ GFS somewhat better
 - ✓ ERA5 closest to observation

Using temperature from ERA5 right now

Motivation





COAMPS

- Systematic Error
- Forcing mechanisms depend on the physical aspect of the cloudscape

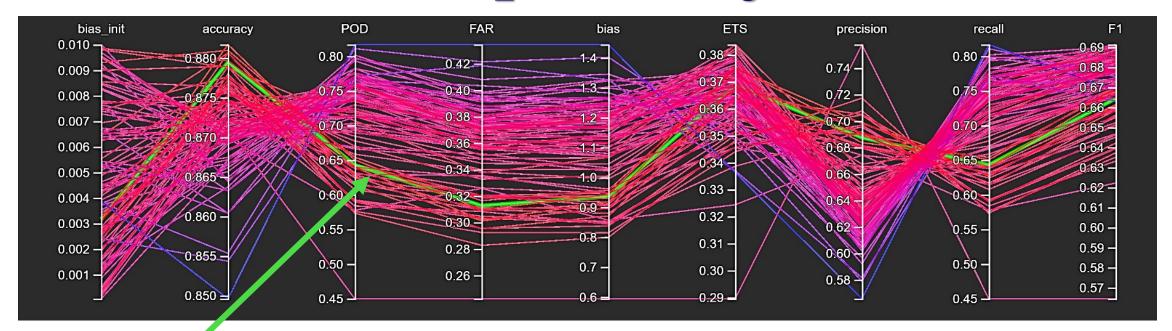
GOES

- Top down view limitation
- Multiple clouds types: represented in 1 pixel

- 6-hour forecast accuracy significant reduced
- COAMPS and GOES: different error trends
- Accuracy varies among cloud families

Upper tropospheric (6hour forecasts)

Bias_initializer tuning

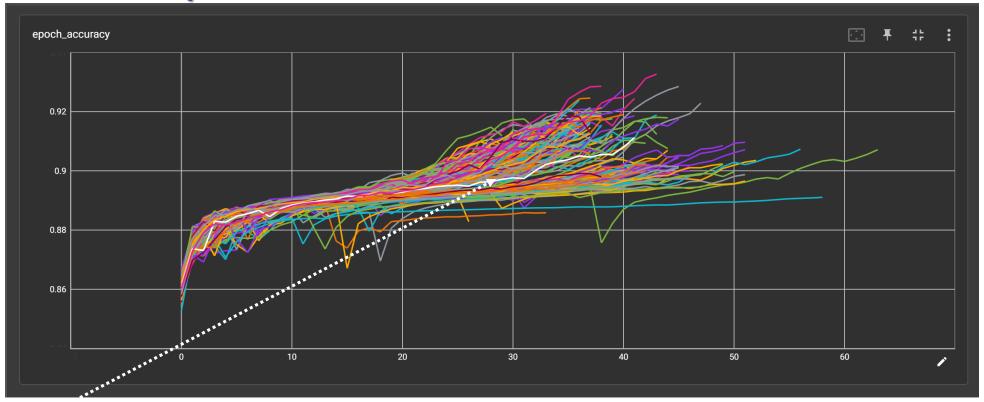


Model with optimal bias initial value

	Accuracy	POD	FAR	Bias	ETS	Precision	Recall	F 1
COAMPS	79%	0.61	0.34	0.75	0.32	0.75	0.70	0.65
UNET -CNN	86%	0.65	0.31	0.98	0.43	0.85	0.80	0.75

Upper tropospheric (6hour forecasts)

Epoch accuracies of different bias initial values

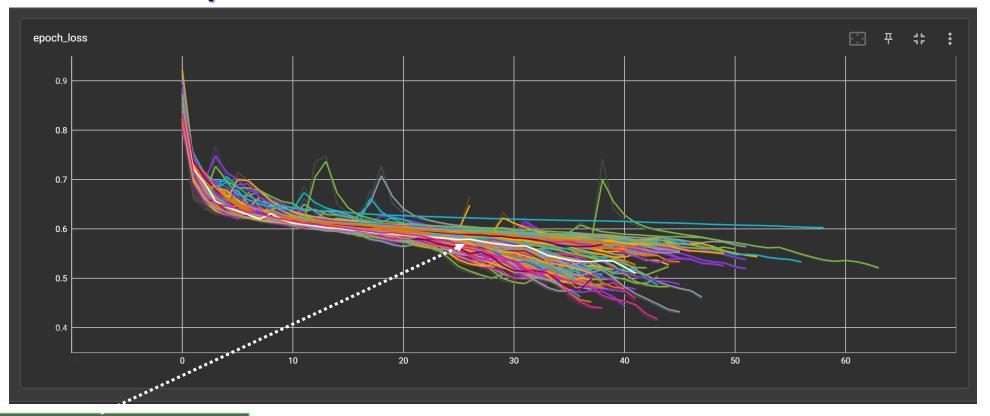


Training accuracy of the selected optimal bias initial value

Run number 63, Initial Bias value =0.0048, Number of epoch =43

Upper tropospheric (6hour forecasts)

Epoch loses of different bias initial values



Training loss of the selected optimal bias initial value

Run number 63, Initial Bias value =0.0048, Number of epoch =43