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All-sky satellite radiance DA
❏ Advances in the assimilation of satellite radiances allowed us to directly assimilate cloud-free and cloud-

affected observations

❏ Significant improvements in analyses and weather forecasts has been found especially using cloud-
affected microwave radiances (e.g., Geer et al., 2011, 2017, 2018; Zhu et al., 2016, 2019)

❏ Efforts towards the assimilation of cloud-affected infrared radiances (e.g., Okamoto et al., 2014; Geer 
et al., 2019; Zhu et al., 2022; Degelia et al., 2023), mostly using water vapor bands

❏ exhibit more Gaussian characteristics than window channels (Okamoto, 2017)

❏ Cloud-affected infrared radiances from window channels remains a challenge:
❏ Observation error distribution
❏ Non-linear observation operators
❏ Variational bias correction
❏ Quality control procedures
❏ Cloud representation in forecast models
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➔ Leverage several quality control filters, variational bias correction, and observations operators in UFO:

◆ Community Radiative Transfer Model (CRTM) interfaced in JEDI-UFO:

● All sensors and conditions (Liu and Collard, 2019)

● Hydrometeor types: water, ice, rain, snow and hail and graupel

➔ 3DVar, 3D/4DEnVar, hybrid data assimilation, EDA, LETKF (recent, under testing) capabilities

➔ Analysis variables: temperature, specific humidity, zonal and meridional components of horizontal 
velocity, surface pressure, mixing ratios of cloud liquid water, cloud ice, rain, snow, and graupel

➔ Assimilate aircraft, sondes, surface (pressure), derived atmospheric motion winds (AMVs), GNSS radio 
occultation, radiances (AMSUA, MHS, ATMS, ABI, AHI)

◆ AMSU-A window channels in all-sky scenes (Liu et al., 2022)

◆ ATMS water vapor and window channels in all-sky scenes (Ban et al., 2023)

➔ Cycling experiments, HofX
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Examine the assimilation of infrared window channel 13 from GOES-ABI and 
Himawari-AHI sensors, using the Model for Prediction Across Scales –
Atmosphere (MPAS-A) coupled with the Joint Effort for Data assimilation 
Integration (JEDI)

❖ Estimate observation errors for ABI and AHI channel 13

❖ Estimate observation bias for bias correction

❖ Run cycling experiments

❖ Preliminary verification of cloud analysis and forecasts 
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Symmetric cloud impact (SCI) by Okamoto et al (2014):

OmB calculated using HofX:
- 30-km forecast from hybrid 3DEnVar cycling experiment
- Observation without bias correction
- Only over water
- Maximum sensor zenith angle: 65.0
- 00Z 20 April - 18Z 14 May 2018

Observation error model

5

CIO = BTy,BC - BTclr

CIM = BTx - BTclr

SCI =    (|CIO| + |CIM|) 

BTy,  BTx: observed and simulated brightness temperature

BTclr: clear-sky background brightness temperature without 
considering cloud-scattering

CIM, CIO: cloud impact on model and observation



ABI
x0     x1        err0   err1    clrbias

13  0.40  34.20   0.72  31.46  -1.13

AHI
x0     x1         err0  err1     clrbias

13  0.20  33.40   0.57  28.98  -0.56

clrbias is used for constant bias correction for each sensor

Parameterized ABI and AHI observation errors using a
piece-wise linear function of UFO (ObsErrorModelRamp):
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/stable/inside/jedi-
components/ufo/qcfilters/obsfunctions/ObsErrorModelRamp.html#obserrormodelramp

ABI

AHI

Observation error model
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➔ MPAS-JEDI v2.0:
◆ 00Z 15 April 2018 - 00Z 20 April 2018
◆ Hybrid 3DEnVar 
◆ 30km-60km dual resolution, 80-member EDA 

forecast
◆ 2 outer loops with 60 iteration each
◆ CRTM observation operator

● with cloud scattering effect for ABI and AHI 
channel 13 with no humidity sensitivity

◆ AHI and ABI channel 13:
● thinned on a 145-km mesh
● only over water

➔ MPAS-A:
◆ non-hydrostatic dynamical core
◆ unstructured mesh 
◆ height-based terrain-following vertical coordinate
◆ 55 levels, 30km top
◆ quase-uniform 30 km grid
◆ “mesoscale reference” physical parameterizations
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Exp. name Observations

benchmark

Aircraft, 
AMVs wind, 

surface 
(pressure), 

sondes, 
GNSS RO 
bending 
angle

clear-sky AMSU-
A (MetOp A, 

MetOp B, NOAA-
15, NOAA-18, 

NOAA-19)
- VarBC*

clear-sky 
MHS 

(MetOp A, 
MetOp B, 
NOAA-18, 
NOAA-19)
- VarBC*

ch13_raw ✓ ✓ ✓
ABI GOES-16 

channel 13
AHI Himawari-8 

channel 13

ch13_constBC ✓ ✓ ✓

ABI GOES-16 
channel 13

AHI Himawari-8 
channel 13

- constant offset 
bias correction

*Predictors: constant offset, lapse rate, emissivity, scan angle 2, scan angle 3 and scan angle 4

Experiments design



Observation space verification
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AHI
raw

constBC

RMS (OmB) > RMS(OmA) 
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ABI

Observation space verification

raw

constBC

RMS (OmB) > RMS(OmA) 



Observation space verification: 6-h forecast

RMS
10

ABI AHI

➔ Experiment with channel 13 leads to improvements in window and water 
vapor channels for ABI and AHI < 0 improvement

> 0 degradation
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MPAS 6-h fcst vs GFS analysis STD < 0 improvement
> 0 degradation

➔ More improvements are found in experiment with constant bias 
correction
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AHI regionABI region

MPAS 6-h fcst vs GFS analysis STD < 0 improvement
> 0 degradation
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Observations vs. Day-3 forecast

AHI channel 13 BTs (degree C)  valid at 00 UTC 21 April 2018
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Observations vs. Day-2 forecast

AHI channel 13 BTs (degree C)  valid at 00 UTC 21 April 2018
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Observations vs. Day-1 forecast

AHI channel 13 BTs (degree C)  valid at 00 UTC 21 April 2018



Takeaways
- Demonstrated our capability to successfully do all-sky infrared DA with MPAS-JEDI

- Calculated observation errors and constant bias for ABI and AHI channel 13

- Assimilated ABI and AHI channel 13 with and without constant bias correction in a cycling 
experiment for 5 days

- More positive impacts are found in the MPAS 6-hr forecast when assimilating channel 13 with 
bias correction with promising results for longer forecast

- More work is needed in terms of the variational bias correction taking into account more 
adequate predictors (Okamoto et al., 2023 uses SCI as a predictor) and the observations 
operator
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