
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Combining Uncertainty Quantification and XAI to 
Understand the Sensitivities of Deep Learning 

Winter Precipitation Type Predictions

DoD Cloud Post-Processing and 
Verification Workshop

Sept. 13, 2023

David John Gagne II
National Center for Atmospheric Research

Boulder, Colorado, USA

1



Motivation

● Transitions between liquid and frozen 
precipitation types can greatly impact 
transportation and logistics

● Forecasting p-type transitions is particularly 
challenging due to uncertainties in 
○ thermodynamics
○ NWP models
○ observations

● ML methods with predictive uncertainty can 
help us understand and utilize uncertainty 
quantification (UQ) for more robust p-type 
forecasts

● Goals:
○ Introduce evidential deep learning
○ Connect uncertainty estimates with physical features
○ Link predictions to input features with XAI 
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https://avgeekery.com/ice-ice-baby-pilots-deal-wintry-mess/

militarynews.com

Paper in prep: Evidential Deep Learning: Enhancing Predictive 
Uncertainty Estimation for Earth System Science Applications
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The NCAR/UCAR AI Web
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AI2ES: Developing Trustworthy AI Systems with User and Domain Expert Guidance
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CISL: David John Gagne, John Schreck, Charlie Becker, 
Gabrielle Gantos 
MMM: Julie Demuth, Chris Wirz, Mariana Cains
RAL: Bill Petzke
Unidata: Thomas Martin

Vision: AI2ES is developing novel, physically based AI 
techniques that are demonstrated to be trustworthy, and will 
directly improve prediction, understanding, and communication 
of high-impact weather and climate hazards.
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Our reconceptualization of trustworthy AI as perceptual 
and context-dependent

AI model

Wirz et al. 2023, (Re)Conceptualizing trustworthy AI: A 
foundation for change, In Prep.



Decomposition of Uncertainty

Aleatoric Uncertainty Epistemic Uncertainty

Definition: Uncertainty from 
unexplained variation in the data.
Estimated by: Single probabilistic AI 
model.

Definition: Uncertainty from 
variation in model predictions.
Estimated by: Ensemble of 
deterministic AI models.

Definition: Combined aleatoric and epistemic uncertainty.
Estimated by: 

1) Ensemble of probabilistic AI models
2) Single “evidential” (higher-order probabilistic) AI model
3) Bayesian AI models

Total Uncertainty
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Collaborators
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Dirichlet Distribution: Model Classification Epistemic Uncertainty
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Theory of Evidence and Subjective Logic

How can we summarize epistemic uncertainty more effectively? 

Classification probabilities must sum to 1, but what if we removed that restriction?

Subjective logic (SL) formulates belief bk over K classes, plus u or “I don’t know”, as a Dirichlet 
distribution (prior). For a NN with K outputs 

where bk is the belief mass, which is the normalized sum of evidence for an outcome. 

Each bk is defined as

where and thus 

Sensoy et al. (2018) arXiv:1806.01768v3

Dirichlet distributions can be updated based on adding new evidence to each outcome.

Source: Sensoy et al. 2018

https://arxiv.org/abs/1806.01768v3


Evidential Deep Learning 
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Full Classifier Evidential Loss

MLE Loss Distance from 0-evidence/uniform prior

Distance 
from 0-
evidence 
prior

= min(1.0, t/50)

MLE Loss

Annealing coefficient Alphas of misleading evidence

Pushes incorrect alphas toward 1 (uniform distribution)

MSE Variance

Sensoy, M., L. Kaplan, and M. Kandemir, 2018: Evidential deep learning to quantify classification uncertainty. 
arXiv [cs.LG], https://arxiv.org/abs/1806.01768.



Dirichlet Aleatoric and Epistemic Uncertainties

Law of total variance decomposes the total uncertainty into the sum of the unexplained variance 
plus the explained variance: 

Aleatoric (unexplained) = 

Epistemic (explained) = 

Total = Aleatoric + Epistemic



Input (0 - 5 km above surface, every 250 meters)

➢ Temperature, Dewpoint, U-Wind, V-Wind

Probabilistic Forecast Example: Classifying Winter Precipitation Type

Target
➢ mPING Crowd-sourced reports of winter 

precipitation types
➢ Rain, Snow, Sleet, Freezing Rain

Data
➢ NOAA Rapid Refresh Vertical Profiles
➢ Interpolate from pressure to height coords
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(i) Deterministic: 
Predict probabilities for classes
Loss = Cross-entropy
pk = Softmax(fw(T,Tdew,U,V))k

(ii) Evidential:
 

Predict evidence for classes 
Loss = Evidential
ek = ReLU(fw(T,Tdew,U,V))k
𝛂k = ek + 1
Compute S, evidential u, 
and the probabilities pk

fw
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(a) P-type (categorical problem)
(b)     Surface layer (regression problem)

ŷi = fw(xi)

μ 𝝈2

ɣ v ⍺ β

(i) Deterministic:     
Predict values for the defined tasks
Loss = RMSE/MAE/etc
Number of outputs = number of tasks

(ii) Parametric Gaussian 𝒩(μ,𝝈2): 
Predict the mean and variance for 
each task
Loss = NLL
Number of outputs = 2 * number of 
tasks

(iii) Parametric Normal-Inverse Gamma p(ɣ,v,⍺,β): 
Predict evidence for parameters for each task
Loss = Evidential,  Number of outputs = 4 * number of tasks
Post-prediction: Compute mean, aleatoric, and epistemic uncertainties

(i)

(ii)

(iii)

Linear

𝒩(μ,𝝈2)

p(ɣ,v,⍺,β)



Precipitation-Type Validation
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Probabilistic Verification
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P-type Drop Fraction
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How well does each type of uncertainty discriminate between easier and harder to classify events?



Regional Case Study
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Evaluation: Binned by Uncertainty

Evidential ModelMLP with Monte Carlo Dropout Evidential Model, Sleet

🤔 🤔 🤔



Root cause: Data Quality

- “ground truth” labels are from crowdsourced observations
- some quality control done, but not enough:

Temperature (C)

Zero Crossings of 0 C One Crossing of 0 C At least two crossings of 0 C



Post hoc XAI methods
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Gradient * Input Which features are most influential in predicting 
the model's output?

Shapley Additive 
Explanations (SHAP)

How much does each feature contribute to the 
model's predictions?

Permutation Feature 
Importance

How does the performance of the model change 
when the information content of a feature is 

destroyed? 

Fig. 3 Input * Gradient attribution method

Background  |   XAI Methods  |  Results  |  Conclusions



Gradient * Input

22Background  |  XAI Methods  |  Results  |  Conclusions

Which features are most influential in predicting the model's output?

Gradient * Input works by multiplying 
the gradient of the model's output with 
the input features. 



Gradient * Input: CONUS plots
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Which features are most influential in predicting the model's output?

Background  |  XAI Methods  |  Results  |  Conclusions



Gradient * Input: CONUS plots
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Which features are most influential in predicting the model's output 
with respect to their height?

Background  |  XAI Methods  |  Results  |  Conclusions



Shapley Additive Explanations (SHAP) 
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How much does each feature contribute to the model's predictions?

Background  |  XAI Methods  |  Results  |  Conclusions

SHAP calculates the average contribution of each 
feature, representing how much each feature 
influences the model's prediction



Permutation Feature Importance 
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What is the importance of each feature in predicting the model's output when the feature values are randomly 
shuffled?

Permutation feature importance works by 
randomly shuffling the values of a single 
feature and measuring the resulting 
change in the model's performance. The 
feature with the largest change in 
performance is considered to be the most 
important feature.

Background  |  XAI Methods  |  Results  |  Conclusions



XAI Results Summary 

27Background  |  XAI Methods  |  Results  |  Conclusions



Transfer to Real-Time
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● Planning to run in model in real-time on 
cloud this winter

● Working with risk communication team 
to perform interviews and/or 
experiments with stakeholders

● Have successfully run ML model on 
RAP, HRRR, and GFS in archival mode

● Partnered with Vaisala to test effect of 
ML p-type predictions on their road 
weather model



Limitations of Evidential Methods
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• Requires calibration dataset to tune evidential regularizer coefficient

• Does not account for uncertainty in the inputs

• Uncertainty estimates will be underdispersive if the model is used outside its training 
context
– e.g. train on observations/analysis but apply to forecast
– transfer to different models

• No evidence prior may not be appropriate for rare events



MILES Group Python Packages
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• miles-guess (github.com/ai2es/miles-guess):
– Implementations of evidential neural networks, deep ensembles, and Monte Carlo dropout

• echo-opt (github.com/NCAR/echo-opt):
– Distributed hyperparameter optimization on HPC systems
– Supports GPU allocation, XAI visualization for hyperparameter settings

• hagelslag (github.com/djgagne/hagelslag): 
– Object segmentation, tracking, and data extraction for convection-allowing model output
– verification scores and plots

• bridgescaler (github.com/NCAR/bridgescaler): 
– Reproducible saving/loading of sklearn preprocessing scalers and transforms
– Custom scalers for groups of variables and image patches

• mlinwrf (github.com/NCAR/mlinwrf):
– Neural network and random forest implementations in Fortran

• mlmicrophysics (github.com/NCAR/mlmicrophysics):
– Bin microphysics emulator for CAM/CESM



Summary
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Evidential deep learning provides more 
comprehensive predictive uncertainty 

quantification. 
Can composite soundings by 

uncertainty and get meaningful 
features

XAI diagnostics help connect 
predictions with atmospheric 

features. 

Email: dgagne@ucar.edu


