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Motivation

G. Thompson et al. / Atmospheric Research 168 (2016) 92-104
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Motivation

GOES-16 channel 14 infrared (11 micron)
11:08:31 17 Feb 2019

~ = T Synthetic infrared brightness temp (°C)
""7/ 8-hour forecast valid 11:00:00 UTC 17 Feb 2019 initial time: 03z 17Feb
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What do we do?

- v Time-Lag Ensembles (e.g., RAP/HRRR)

v" Physics Ensembles (Thompson, Morrison, WSM6, etc.)
v' Stochastic Parameter Perturbations (SPP)




High-Res Rapid Refresh (HRRR)
Time-lag-ensemble (TLE) average

* Hourly updates with hourly forecasts to 18 hours
* A traditional HRRR ensemble forecast system coming in a few years

now forecast time

|
9z + 7h

8z + 8h
7z + Sh

22z + 18h

* If now is 09:30 and we consider a forecast valid at 16:00
* Then we could have as many as 12 forecasts all valid at this time.

NCAR



Time-lag-ensemble (TLE)

Simple weighted average of many HRRR forecasts valid at same time

* Cloud water, rain, snow, etc.
Example max-in-column icing forecast valid 20z 16Jan2013

0B:00:00 Torecast vaid at 2013-01-16_20:00:00 09:00:00 Torecast valla at 2013-01-16_20:00:00
WIN single, deterministic forecas NIN single. deterministic forecast




MAY 2021 THOMPSON ET AL. 1481

A Stochastic Parameter Perturbation Method to Represent Uncertainty in a Microphysics Scheme

GREGORY THOMPSON,* JUDITH BERNER,* MARIA FREDIANI* JASON A. OTKIN,” AND SARAH M. GRIFFIN®

* National Center for Atmospheric Research, Boulder, Colorado
® Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, Madison, Wisconsin

(Manuscript received 9 March 2020, in final form 25 November 2020)

ABSTRACT: Current state-of-the art regional numerical weather forecasts are run at horizontal grid spacings of a few
kilometers, which permits medium- to large-scale convective systems to be represented explicitly in the model. With the
convection parameterization no longer active, much uncertainty in the formulation of subgrid-scale processes moves to
other areas such as the cloud microphysical, turbulence, and land surface parameterizations. The goal of this study is to
investigate experiments with stochastically perturbed parameters (SPP) within a microphysics parameterization and
the model’s horizontal diffusion coefficients. To estimate the ““‘true’ uncertainty due to parameter uncertainty, the
magnitudes of the perturbations are chosen as realistically as possible and not with a purposeful intent of maximal
forecast impact as some prior work has done. Spatial inhomogeneities and temporal persistence are represented using a
random perturbation pattern with spatial and temporal correlations. The impact on the distributions of various hy-
drometeors, precipitation characteristics, and solar and longwave radiation are quantified for a winter case and a
summer case. In terms of upscale error growth, the impact is relatively small and consists primarily of triggering
atmospheric instabilities in convectively unstable regions. In addition, small in situ changes with potentially large
socioeconomic impacts are observed in the precipitation characteristics such as maximum hail size. Albeit the impact of
introducing physically based parameter uncertainties within the bounds of aerosol uncertainties is small, their influence
on the solar and longwave radiation balances may still have important implications for global model simulations of
future climate scenarios.




YTOCIIA5T1C I dIqaIICICT I C

Example random perturbation patterns
User defined: magnitude, spatial, and temporal time scales
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Mean Bias Error for May Simulated 10.3 um Brightess Temperature [K]
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Mean Bias Error for January Simulated 10.3 um Brightess Temperature [K]
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SPP-MP Continuous Ranked Probability Skill Score compared to Control Ensemble
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v' Cloud Fraction schemes
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Evaluation of Fractional Cloudiness Parameterizations for Use in a Mesoscale Model

DaviD M. Mocko AND WiLLIAM R. CoTTON
Colorado State University, Fort Collins, Colorado
(Manuscript received 1 June 1994, in final form 3 November 1994)

ABSTRACT

The Regional Atmospheric Modeling System (RAMS), developed at Colorado State University, was used to
predict boundary-layer clouds and diagnose fractional cloudiness. The primary case study for this project oc-
curred on 7 July 1987 off the coast of southern California. On this day, a transition in the type of boundary-
layer cloud was observed from a clear area, to an area of small scattered cumulus, to an area of broken strato-
cumulus, and finally, to an area of solid stratocumulus. This case study occurred during the First ISCCP (Inter-
national Satellite Cloud Climatology Project) Regional Experiment field study. RAMS was configured as a
nested-grid mesoscale model with a fine grid having 5-km horizontal grid spacing covering the transition area.

Various fractional cloudiness schemes found in the literature were implemented into RAMS and tested against
each other to determine which best represented observed conditions. The complexities of the parameterizations
used to diagnose the fractional cloudiness varied from simple functions of relative humidity to a function of the
model’s subgrid variability. It was found that some of the simpler schemes identified the cloud transition better,
while others performed poorly.
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FC - Sundavist

FC = Kvamsto
Fi6. 9. Kvamste's fractional cloudiness scheme, from the RAMS N » . N
innermost grid, 262 m AGL. valid 1830 UTC 7 July 1987. :fM'S°i_fK""“:;'é;2'::g‘L‘f boc-rrroes ;1";"‘;-“'}‘;";;:

The result from using the FC scheme of Betts and ~ widely from 0.0 to 1.0, but in a haphazard manner
Boers, using the wet virtual adiabat, is also not compared to the observations. In the southeast cor-
shown. This scheme diagnosed FC that varied ner of the grid, the FC was diagnosed to go to zero,

FiG. 5. Landsat scene at 1830 UTC 7 July 1987 with center coor-
dinates 33°10°N, 121°44'W (from Betts and Boers 1990). Distance

across is about 180 km.

FC = EX/Mahrt - mikes fluxes FC - Manton/Cotton - mikes fluxes
F10. 12. Manton and Cotton’s fractional cloudiness scheme, from

FiG. 11. Ek and Mahrt's fractional cloudiness scheme, from the
RAMS innermost grid, 262 m AGL., valid 1830 UTC 7 July 1987 the RAMS inncrmost grid, 262 m AGL, valid 1830 UTC 7 July 1987.
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this location and time, when compared to the obser-
ns.

The fractional cloudiness fields examined and the
tabular data show that feeding the FC back into the
model’s radiation calculations improved the model's
ability to diagnose the cloud transition for this case. As
mentioned previously, this was a result of the FC af-
fecting the surface fluxes and cloud breakup and for-
mation.

8. Summary and conclusions

The primary goal of this paper was to compare and
contrast the performance of various kinds of boundary-
layer fractional cloudiness schemes put into the RAMS
model. The fractional cloudiness schemes were taken
from papers from the atmospheric science literature.
The RAMS model used the Weissbluth turbulent pa-
rameterization for this study. This parameterization
was used both because it added a predictive variable to
RAMS and because it provided turbulent variances and
covariances needed for some of the fractional cloudi-
ness schemes.

The RAMS model was set up with three interactive
nested grids for the over-ocean study. This study used
the 7 July 1987 day from the FIRE I experiment, when
a strong cloud transition from clear to overcast was
observed. Overall, the simulation did well in reproduc-
ing the observed conditions; however, the height and
change in height of the PBL across the transition was
poorly predicted. Some of the fractional cloudiness
schemes were shown to capture the observed cloud
transition, while others were shown to have not cap-
tured the transition.

The Albrecht scheme generally identified areas of
solid cloud or complete clear. However, no middle
ground was observed. While this scheme was very easy
to put into RAMS, it provided no additional informa-
tion for these case studxes aboul cloud amoum and lo-

The Kvamste and Sundqv t et al. schemes identified
both partial and solid cloud areas very well. These
schemes were very easy to code and, at the same time,
offered the most reliable fractional cloudiness amounts
among all of the schemes tested. A potential drawback
of t
tion may exist in variables other than just relative hu-
midity. Sundqvist et al. may be slightly preferred be-
cause it is not a simple linear function of relative hu-
midity and it compared a little better with observations.

The Betts and Boers wet adiabat and wet virtual adi-
abat schemes did not prove to be very useful. These
schemes may be tied too closely to conditions observed
on the day from which they were developed. The
RAMS model did not produce the same conditions to
the accuracy with which they were observed. If the
boundary layer is too evenly mixed, no gradient in frac-
tional cloudiness from these schemes will be observed.

MOCKO AND COTTON 2899

The Betts and Boers parameterizations were more dif-
ficult to encode into the RAMS model than the simple
function of RH schemes. While the failing of these
schemes may be attributed to deficiencies in RAMS, it
is expected that other reg: and global models will
have similar difficulties diagnosing fractional cloudi-
ness with these schemes.

Ek and Mahrt's scheme performed reasonably well
for this study. Results were greatly improved by allow-
ing this FC scheme to feed back into the model. It was
also relatively easy to encode this parameterization into
RAMS. This scheme may improve as the cutoff in the
distribution is tested for its best application within the
RAMS model.

The results from the subgnd-scale condensation
schemes, Manton and Cotton, Sommeria and Dear-
dorff, and Bechtold et al. were all disappointing. Tm
values did not compare to observations, and it took
nificant effort to code these parameterizations. The re-
sults may improve if the horizontal grid spacing is d:
matically Iov\crcd as these schemes are most applic
ble to small

A review of good points of each fractional
cloudiness scheme used for this study can be found in
Table 7. Conversely, a review at the bad points of each
scheme can be found in Table 8.

Overall, the Kvamsto, Sundqvist et al., and Ek and
Mahrt schemes performed the best for this case study.
They matched observations, especially in the trend of
fractional cloudiness in time and space. The magni-
tudes from the Ek and Mahrt scheme were slightly
closer to observations.

TasLe 7. Brief review of good points of using each
fractional cloudiness scheme.

FC scheme Good points

Albreche (1989) Shows observed FC transition nicely.

Easy 10 apply to mesoscale model.

Shows observed FC transition nicely.

FC amounts diagnosed well compared
1o observations.

Easy 10 apply to mesoscale model.

Shows observed FC transition nicely.

FC amounts diagnosed well compared
to observations.

Easy to apply to mesoscale model.

Not a linear function of RH as is
Kvamste.

Diagnoses on mixed-layer information.

Shows observed FC transition nicely.

FC amounts diagnosed well compared
to observations.

Relatively casy to apply to mesoscale
model.

Kvamsto (1991)

Sundgvist et al. (1989)

Betts and Boers (1990)
Ek and Mahrt (1991)

Bechtold etal. (1992),  Diagnoses on turbulent values.

Manton and Cotton

TasLe 8. Brief review of bad points of using each
fractional cloudiness scheme.

FC scheme
Albrecht (1989)
Kvamsto (1991)

Sundqvist ¢t al. (1989)

Betts and Boers (1990)

Ek and Mahrt (1991)

Bechtold et al. (1992),
Manton and Cotton
(1977), and

Sommeria and
Deardorff (1977)

Bad points

Amount of FC typically either 0.0 or 1.0.

Diagnoses only on relative humidity.

Other cloud-forcing information may be
lost

Diagnoses oaly on relative humidity.

Other cloud-forcing information may be
lost.

FC transition does not match with
obscrvations.

Produces FC in column, not in volume.

May work only for a strict sct of
conditions.

Difficult to apply to mesoscale model.

Need to have moisture flux information
from model.

Problems with model having maximum
RH = 100%.

Very difficult to put into mesoscale
model.

Model grid spacing chosen not perfect.

Diagnosed FC in large no-cloud arcas.

Highly dependent on magnitudes of
subgrid values.







What amount of cloud water or cloud ice/snow constitutes 100% cIQud"?ﬁ@qtion?
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Max-in-column Qtotal (>1.E-6) [Exp_Control]

15-h forecast wvalid 18:00:00 UTC 17 Feb 2
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clwt (cloud water threshold between 1.E-7 and 1.E-6)

clwf = cloud water + cloud ice + snow + rair + convective cloud water mixing ratio
o SN A — — ¥

there is no possibility of Cloud
Fraction > 0.0 if there are no clouds
modeled by explicit or convection scheme

ccpp-physics / physics / radiation_clouds.f

Code

3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742

3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761

Blame (i) 3869 lines (3444 loc) - 168 KB

!> This subroutine computes the Xu-Randall cloud fraction scheme.

subroutine cloud_fraction_XuRandall &

& ( IX, NLAY, plyr, clwf, rhly, qstl, & ! ——

& cldtot ) &Y -
! —— inputs:

integer, intent(in) :: IX, NLAY
real (kind=kind_phys), dimension(:,:), intent(in) :: plyr, clwf, &
& rhly, gstl

| === outputs
real (kind=kind_phys), dimension(:,:), intent{inout) :: cldtot

! -— local variables:

real (kind=kind_phys) :: clwmin, clwm, clwt, onemrh, value, &
& teml, tem2

integer :: i, k
!> -~ Compute layer cloud fraction.

clwmin = 0.0
do k = 1, NLAY
doi=1, IX
clwt = 1.8e-6 = (plyr(i,k)+08.001)

if (clwf{i, k) > clwt) then

onemrh= max( 1.e-19, 1.8-rhly(i,k) )
clwm = clwmin / max( 0.01, plyr(i, k)+@.001 )

teml = min(max{sqrt{sqrt(onemrhxqstl(i,k))),0.0001),1.0)
teml = 2000.0 / teml

value = max( min( temls(clwf(i,k)-clwm), 50.0 ), 0.0 )
tem2 = sqrt( sqrt(rhly(i,k)) )

cldtot(i,k) = max{ tem2«(1.@-exp(-value)), 8.0 )
endif
enddo
enddo

end subroutine cloud_fraction_XuRandall

inputs
outputs




RH-critical depends on ocean v. land and has grid
scale dependence

” =

100% cloud fraction where gx > 0.01 g/kg
i .~

where 1.E-5 > gy > 0.01 g/kg, cloud fraction

scales with logio of mixing ratio ”

at high altitudes, ocean RH-critical reverts to the
lower land value

~

!..First cut scale-aware. Higher resolution should require closer to

.. saturated grid box for higher cloud fraction. Simple functions

.. chosen based on Mocko and Cotton (1995) starting point and desire
. to get near 100% RH as grid spacing moves toward 1.0km, but higher
. RH over ocean required as compared to over land.

DO k = kts,kte

delz = MAX(100., MIN(dz(k), 1000.0))

RH_00 0.79+MIN(0.20,SQRT(1./(25.0+gridkm*delz*0.01)))
RH_00 0.87+MIN(0.12,SQRT(1./(60.0+gridkm«delz*0.01)))
RHUM rh(k)

if (qc(k).ge.1.E-5 .or. qi(k).ge.l1.E-5
.or. (gqs(k).gt.1.E-5 .and. t(k).1t.273.)) then
CLDFRA(K) = 1.9
elseif (((gc(k)+gi(k)).gt.1.E-8) .and.
((gec(k)+qi(k)).1t.2.E-5)) then
var_temp = MIN(1.0, (8.005 + logl@(qc(k)+qi(k)))/3.)
CLDFRA(K) = var_temp#*var_temp
else

IF ((XLAND-1.5).GT.@0.) THEN
RH_00 = RH_000

ELSE
RH_00 = RH_@0L

ENDIF

tc = MAX(-80.0, t(k) - 273.15)
if (tc .1t. -30.0) RH_00 = RH_0OL

&

&

!——— Ocean

l—— Land
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entire cloud layers are treated as adiabatic clouds with an
entrainment factor, but the column sum of all water/ice clouds

are kept from producing excessive LWP/IWP. No sub-grid

L
clouds co-exist with explicit MP clouds SKEW-T/LOG-P VALID 1200 UTC 01/16/2013 KIAD Lat = 38.93, Lon = ~-77.45
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Cloud-top phase - OBS

GOES-16 Visible

916_20190217_170213.nc
Albedo

Machine Learning: Principle Components Analysis (PCA)

GOES-16 Level2 Cloud-top phase

916_20190217_170213.n¢c

45w
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NCAR ML-PCA Cloud-top phase

916_20190217_165713.n¢
Classification




Cloud-top phase - Model

HRRR cloud optical depth (1) HRRR cloud-top phase (r = 0.2) HRRR cloud-top phase (r = 0.5)

HRRR valid 2017021717 HRRR valid 2017021717 HRRR valid 2017021717
Cloud Top Phase (7 threshold = 0.2

Cloud Top Phase (7 threshold = 0.5

40
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What do we do?

—

5

Fn
]

v Data Assimilation




brightnessTemperature H(x) 2022-02-14T21:00:00Z Channel 13

min= 191.9 max= 318.8 mean= 279.4 stdv=  19.27

I Total: 1136279.0

=15 -10 =5 0 5 10 15
Brightness Temperature (K)

min= -14 max= 14 mean= -0.1604 stdv=  5.081



Future Work

QC & BC

cloud mismatches: obs vs. first guess
correlated errors
find cause of problem with solar-affected channels in CRTM

DA Sensitivity Experiments
GOES-16 & GOES-17

* 15Feb— 15 Mar 2022 and 01 — 31 Aug 2021

* 3-hourly vs. hourly

* 64 vs. 8 km subsampled data

e include visible wavelength

40



Synthetic visible albedo brightness temp (percent)

0-hour forecast valid 03:00:00 UTC 20 May 2019 initial time: 03z 20May

Coming soon:

DA with Visible reflectance channels
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Is the future Mostly Sunny or Partly Cloudy?

*  Microphysics schemes do not FIX all poor cloud forecasts; dynamics RULE baby!

* Stochastic parameter perturbations to multiple physical parameterizations are highly useful.

* Convective parameterizations are a nightmare. (Duh, convection is difficult.)

* Good data assimilation in cloudy regions should improve initial conditions as well as forecasts.
More work needed in PARTLY to MOSTLY CLOUDY conditions.
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