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Geospatial data One of many aggregation schemes XAI results for each group

Research question:
How does the choice of grouping raster elements into features
influence the explanations generated from XAI methods? 2



Model verification Scientific insights

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " 
Why should i trust you?" Explaining the predictions of 
any classifier. In Proceedings of the 22nd ACM SIGKDD 
international conference on knowledge discovery and 
data mining (pp. 1135-1144).

Presentation: Explainable AI (XAI) for Climate Science: Detection, Prediction 
and Discovery. Elizabeth Barnes. 2022.
https://www.imsi.institute/videos/explainable-ai-xai-for-climate-science-de
tection-prediction-and-discovery/ 

Explainable Artificial Intelligence (XAI)

3

https://www.imsi.institute/videos/explainable-ai-xai-for-climate-science-detection-prediction-and-discovery/
https://www.imsi.institute/videos/explainable-ai-xai-for-climate-science-detection-prediction-and-discovery/


Global Explanation: summary explanation over a set of samples

Feature Importance - Arize AI 

Feature Effect:
How each feature 
contributes to output

Feature Importance:
How each feature influences 
model performance

Permutation Feature Importance 

Local Explanation: instance explanation based on a single sample

SHAP Library 
Gradient-weighted Class Activation Mapping 
- Grad-CAM- | by Mohamed Chetoui | 
Medium 

PartitionShap: viewing 
multi-channel explanations in 3D 

Tabular RGB

Arbitrary
raster

XAI Approaches
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https://arize.com/glossary/feature-importance/
https://hongl.tistory.com/114
https://github.com/slundberg/shap
https://medium.com/@mohamedchetoui/grad-cam-gradient-weighted-class-activation-mapping-ffd72742243a
https://medium.com/@mohamedchetoui/grad-cam-gradient-weighted-class-activation-mapping-ffd72742243a
https://medium.com/@mohamedchetoui/grad-cam-gradient-weighted-class-activation-mapping-ffd72742243a
https://youtu.be/kNFY6ff996E
https://youtu.be/kNFY6ff996E


● High-dimensional geospatial raster (gridded) data is used to train complex machine learning models.

● Often complex models (e.g. Deep Neural Net) greatly outperform simpler alternatives (e.g. Random Forest).

● These models are hard to interpret: what are the model’s decision-making strategies?

Geoscience AI Models

Xu, Guangning, et al. "AM-ConvGRU: a spatio-temporal model 
for typhoon path prediction." Neural Computing and 
Applications 34.8 (2022): 5905-5921.
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Autocorrelation in Geospatial Data

NASA Earth Observatory
Binding et al., 2020
https://link.springer.com/chapter/10.1007/698_2020_589 

Petras et al., 2017
https://opengeospatialdata.springeropen.com/articles/10.1186/s40965-017-0021-8 

Harmful algal bloom

2D spatial 3D spatial 3D temporal

FogNet: 4D data (spatio-temporal) packaged as 3D

VVel  850mb  t0   |   VVel  850mb  t1   |   VVel  850mb  t2   |  VVel 850mb  t3   |  VVel 875mb  t0   |   …

4 adjacent bands → time sequence followed by next altitude
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https://eoimages.gsfc.nasa.gov/images/imagerecords/86000/86327/erie_oli_2015209_lrg.jpg
https://link.springer.com/chapter/10.1007/698_2020_589
https://opengeospatialdata.springeropen.com/articles/10.1186/s40965-017-0021-8


Cloud detection model
XAI: how much does each pixel contribute to detection of clouds?

Consider evaluating individual pixels:

Spatial Autocorrelation & XAI

If you change this pixel, does model output change?

Hopefully, robust to noise →no significant change

For meaningful XAI results: need to group grid cells and explain those groups

No pixels are important… but model detects clouds!

Consider evaluating superpixels:
Changing this superpixel, does model output change?

Clearly a cloud feature that could have been learned

Removing it could lower model’s detection confidence

Sentinel-2 image
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Coarse groups:
- More reliable feature importance/effect ranking
- Lower resolution model insights

Granular groups:
- Less reliable feature importance/effect ranking
- Higher resolution model insights

When XAI highlights an influential feature:
- That feature is expected to actually be influential
- But the features not highlighted could be as or more influential

When grouping scheme granularities disagree:
- Suggests something about the scale of the learned feature

It is very easy to apply XAI methods and be greatly mislead by the results

Grouped Geospatial XAI Assumptions
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Example: superpixels on RGB images

● PartitionSHAP: recursively computes 
SHAP values by halving superpixels
shap.explainers.Partition — SHAP documentation
 

● Recursion guided by change in SHAP value

● By default, only considers rows & cols

● Our fork: Channel-wise PartitionSHAP
https://github.com/conrad-blucher-institute/shap 

Geometric Grouping Schemes

Several schemes for grouping raster elements
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https://shap.readthedocs.io/en/latest/generated/shap.explainers.Partition.html
https://github.com/conrad-blucher-institute/shap


FogNet: 3D CNN for Forecasting Coastal Fog

● 3D CNN with attention, dense block, & dilated convolution
● Beats NOAA’s operational High Resolution Ensemble Forecast (HREF)
● Input data: spatio-temporal raster of metocean variables, divided into 5 related groups

https://gridftp.tamucc.edu/fognet/  

32

32

384

G1: wind
G2: turbulence kinetic energy & humidity
G3: lower atmospheric thermodynamic profile
G4: surface atmospheric moisture & microphysics
G5: sea surface temperature

Physics-based groups
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https://gridftp.tamucc.edu/fognet/


XAI Methods Applied

Feature Importance
Global methods → how did feature influence model performance?

● Permutation Feature Importance (PFI): replace feature with permuted values
McGovern, Amy, et al. "Making the black box more transparent: Understanding the physical 
implications of machine learning." Bulletin of the American Meteorological Society 100.11 (2019): 2175-2199.

● LossSHAP (LS): approximate Shapley values . . . combinatorial complexity
Covert, Ian, Scott Lundberg, and Su-In Lee. "Feature removal is a unifying principle for model explanation methods." arXiv preprint 
arXiv:2011.03623 (2020).

● Group-hold-out (GHO): entirely remove feature & retrain model
Au, Quay, et al. "Grouped feature importance and combined features effect plot." Data Mining and Knowledge Discovery 36.4 (2022): 1401-1450.

Feature Effect
Local methods → how did feature influence specific model decision?

● Channel-wise PartitionSHAP (CwPS): approximate Shapley values for superpixels in each channel
Kamangir, Hamid, et al. "Importance of 3D convolution and physics on a deep learning coastal fog model." 
Environmental Modelling & Software (2022): 105424.
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Feature Importance Results

● Groups 1-3 dilute as we increase granularity
● Groups 1-3 contain vertical profiles where

small-scale features have little predictive power
● Suggests that FogNet learns 3D features

PFI:  Permutation Feature
          Importance
GHO: Group Hold-Out
LS:  LossSHAP

● 3D CNN with double-branch dense block & attention mechanism
● Applied geometric rather than data-driven groupings for XAI
● Compared 3 grouping schemes:

○ Physics-based channel groups
○ Channel-wise
○ Channel-wise SuperPixels (CwSP)
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Feature Effect Results
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Channel-wise PartitionSHAP
(channels aggregated & ranked)
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XAI Insights for Geospatial Models
XAI Pitfalls
1. FogNet does not use G3 (wind)
- Based on more granular XAI, appears that G3 has no influence of the model
- But we know that G3 responsible for ~20% of the performance

2. FogNet relies mostly on information around the target
- Based on CwPS, appears that FogNet is very focused on target region and ignores offshore
- But we know that G1 - G3 are important even though they appear less using superpixels

XAI Insights
1. FogNet appears strongly influenced by SST near the target airport (KRAS)
2. FogNet appears to learn large-scale patterns for G1 - G3, such as in the vertical wind profile
3. FogNet appears to only learn strategies for the majority fog case: advection fog

See upcoming manuscript for detailed meteorological interpretation of 
XAI results from Waylon Collins from the National Weather Service

14



● Developing grouping strategies to improve XAI
● But hard to determine which produces best explanations
● Extending work by Mamalakis et al.: benchmark data & functions with known attribution

Mamalakis, A., Ebert-Uphoff, I., & Barnes, E. A. (2022). Neural network attribution methods for problems in 
geoscience: A novel synthetic benchmark dataset. Environmental Data Science, 1, e8.

Ground truth 
explanation

Integrated 
Gradients

Saliency 
Maps

Synthetic Benchmarks for XAI Assessment
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Then we can explore data-driven
feature aggregation schemes
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Questions?

Key Conclusions

1. XAI outputs can be better interpreted by understanding what question the method asks

2. XAI should be analyzed in various ways to avoid major pitfalls


