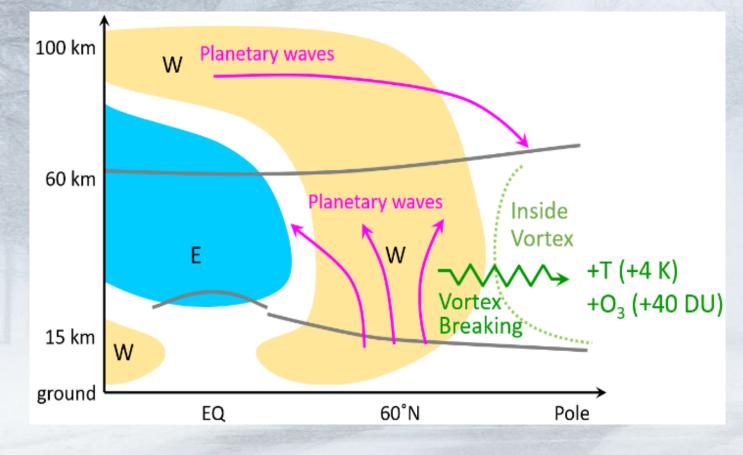
Climate Impacts of Solar Cycle and Quasi-Biennial Oscillation: From the Polar Area to Midlatitude

Presenter: Lin Tan¹

Co-author: Andrew Bai^{2,3}, Annie Bai³, King-Fai Li¹, Ka-Kit Tung⁴, ShuHui Wang²


¹ University of California, Riverside, CA
² University of California, Berkeley, CA
³ St. Paul Academy and Summit School, St. Paul, MN
⁴ University of Washington, WA

Extratropical stratospheric interannual variability is compounded by the nonlinear effects of the Solar Cycle (SC) and the Quasi-Biennial Oscillation (QBO).

> Observed modulation by the QBO/SC to the winter pole:

- 1. Easterly QBO (eQBO) phase
 - More vortex breaking and stratospheric sudden warmings (SSWs) through the Holton-Tan mechanism [*Holton & Tan*, 1980; *McIntyre*, 1982].
 - 2. 11-year solar maximum (SCmax)
 - The polar stratospheric changes are similar to those of eQBO. The Holton-Tan mechanism is likely also responsible for the Solar Cycle [*Camp & Tung*, 2007].

- Either eQBO or SCmax, or both, leads to 4 K and 40 DU increase in polar temperature and ozone inside the vortex [Camp & Tung, 2007; Li & Tung, 2014].
- As a follow up study, we define the wQBO/SCmin as the quiescent state and compare the temperature anomalies across different combinations of QBO and SC phases.

Figure 1. Graphical summary of Holton & Tan's [1980] results.

Objective

To study the **indirect impacts** of the **coupled QBO/SC forcing** on the **mid-latitude temperature.**

Idea highlight:

 We use 60 years (1954 - 2014) of NCEP-1 reanalysis data to examine the effects of QBO/SC on mid-latitudes by looking at the temperature anomaly) of the 3 excited states from the quiescent state(wQBO/SCmin).

Some Detailed Methodology

- wQBO index was defined when the zonal wind above Singapore is greater or equal to 4 m s⁻¹ while eQBO was identify as -4 m s⁻¹.
- The annually averaged $F_{10.7}$ solar flux is used to define the solar maximum (\geq 140 s.f.u.) and minimum (\leq 125 s.f.u.) conditions.

	Solar Cycle Minimum	Solar Cycle Maximum
Westerly QBO	Quiescent state WQBO, SC min	WQBO, SC max
Easterly QBO	EQBO, SC min	EQBO, SC max

Result

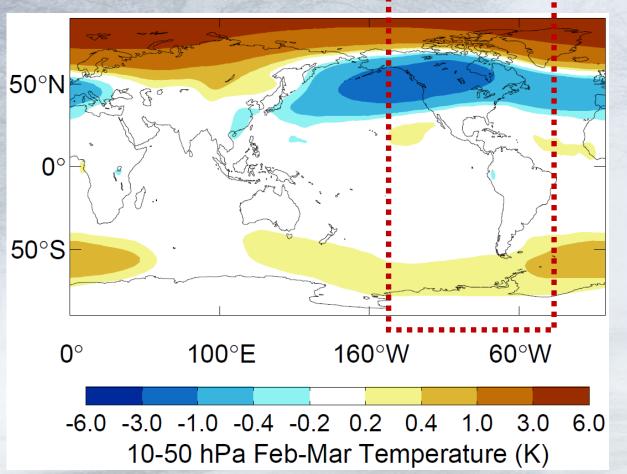


Figure 2. Stratospheric temperature anomaly relative to the quiescent state.

At the stratosphere...

- A planetary-scale cold anomaly in the stratosphere (10-50hPa) over North America is observed.
- Indicating an exchange of airmass between the polar region and mid-latitudes during the major warming event.

Figure 3. Surface temperature anomaly relative to the quiescent state.

What about the surface?

The stratospheric cold anomaly extends downward to the surface in the southern US, leading to a temperature decrease of 0.5–1 K relative to the quiescent state.

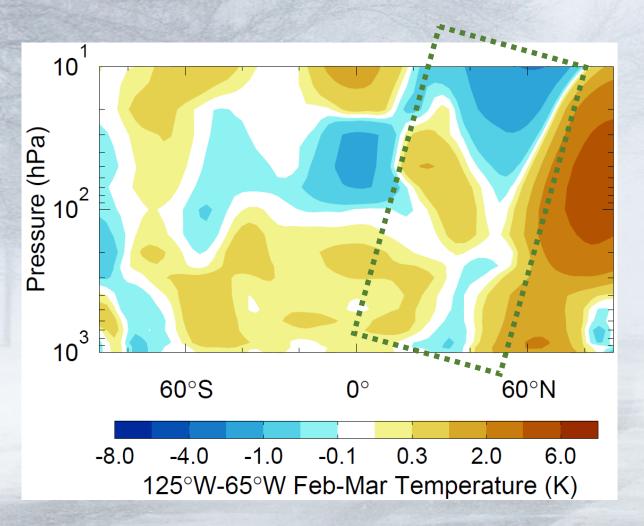


Figure 4. Vertical cross-section of the temperature anomaly

Stratosphere - Surface

- To show more clearly the downward propagation, a cross-section of the temperature difference over North America (135°W–65°W) is shown on the left.
- The green box highlights the downward propagation over the southern US.

Conclusion

- The Solar Cycle and the QBO may indirectly modulate regional midlatitude weather through their impacts on polar dynamics.
- Possible mechanisms that relate the breaking of polar vortex at stratosphere and the transport of the cold air into the troposphere at the mid-latitude require further examinations.