Evaluation of CMIP6 AOD over the Middle East North Africa (MENA) region

Ajay Parottil¹, Baiju Dayanandhan², Pritam Das Mahapatra³, Ahmed Al Harrasi²

1. ACOM, National Center for Atmospheric Research. USA 2. Natural and Medical Sciences Research Center, University of Nizwa, Oman

3. Department of Atmospheric Sciences, Cochin University of Science and Technology, India

BACKGROUND

Approximately 75% of the global aerosol burden is attributed to dust aerosols originating from the Middle East North Africa (MENA) region.

NCAR

- Couple Model Intercomparison Project phase 6 (CMIP6) act as a vital tool in comprehensive investigations of aerosol characteristics that provide wide spatial and temporal coverage.
- Regional evaluations of the CMIP6 model simulated Aerosol Optical Depth (AOD) exclusively over the MENA region are limited.
- It is essential to investigate how the CMIP6 models simulate AOD over the MENA region.

DATA SETS

CMIP6 (study period: 2001-2014 for historical. 2040-2050 for future projections)

Model	Spatial Resolution
ACCESS-CM2	1.875 ⁰ x 1.25 ⁰
ACCESS-ESM1-5	1.875 ⁰ x 1.25 ⁰
AWI-ESM-1-1-LR	0.9 ⁰ x 0.9 ⁰
EC-Earth3-AerChem	3.0 ⁰ x 2.0 ⁰
GFDL- CM4	1.25 ⁰ x 1.0 ⁰
GFDL-ESM4	1.25 ⁰ x 1.0 ⁰
INM-CM4-8	1.50 ⁰ x 2.0 ⁰
INM-CM5-0	1.50 ⁰ x 2.0 ⁰
IPSL-CM6A-LR	1.26 ⁰ x 2.5 ⁰
MPI-ESM1-2-HR	1.875 ⁰ x 1.875 ⁰
MPI-ESM-1-2-HAM	1.875 ⁰ x 1.875 ⁰
MRI-ESM2-0	1.125 ⁰ x 1.125 ⁰

Fig. 2: AOD bias between individual CMIP models and MODIS AOD for MAM and JJA

Fig. 4: Number of occurrences (NoO) when monthly AOD is >0.4, obtained from MODIS, MERRA2, GFDL-ESM4, and MMM over the MENA region.

The difference in the NoO for AOD >0.4 patterns between the MMM and the GFDL-ESM4 can be due to the structural differences in aerosol schemes employed in the individual CMIP6 models .

Fig. 3. Monthly Climatology of MODIS(black line) and CMIP6 Multi-Model mean AOD (red line)

- The individual CMIP6 models show large diversities in the spatial distribution of AOD with many models failing to capture key features of AOD over the MENA region.
- The GFDL-ESM4 model simulates the spatiotemporal distribution of seasonal AOD better than the MMM in comparison with reanalysis and satellite observations.
- The different driving factors that make GFDL-ESM4 outperform MMM are the ability to simulate DOD, prevailing wind patterns and . The MMM from CMIP6 models direction, and soil moisture accurately.
- A comparison of MMM AOD of high, medium, and low emission scenarios for JJA (2040-2050) reveals no significant change.
- * The changes in the NoO are consistent with AOD changes with GFDL-ESM4 simulation showing the highest value in the SSP5-8.5 emission scenario, followed by SSP2-4.5 and SSP1-2.6 respectively for both seasons.

40°N

GFDL-ESM4 SSP12

GFDL-ESM4 SSP126 Freq>0.4

MODIS-TERRA

MODIS-TERR

50°N

40°N

30°N

20°N

50° 40°N

30°N

20°N 10°N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 5: GFDL-ESM4 and MERRA-2 simulated dust AOD for MAM and JJA.

Fig. 6: Spatial AOD and NoO when

monthly AOD is >0.4, obtained from GFDL-ESM4 and MMM for different emission scenarios.

CONCLUSIONS

- doesn't have to be the best way of representing the aerosol scenario.
- Studying the AOD distribution of individual CMIP6 models before using the MMM may be a better approach before investigating the climate impact of aerosols.