

Rapid Inference of Physically-informed Top-Down Emissions using the **AI-driven Inverse Model with Observations**

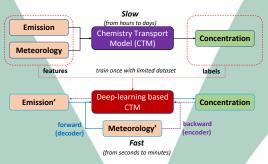
B.H. Baek¹, Jia Xing², Mark Shepard³, Siwei Li⁴, Chi-Tsan Wang¹, Jesse Bash⁵, Enrico Dammers⁶, Karen Cady-Pereira⁷, Daniel Tong¹ ¹George Mason University; ²University of Tennessee; ³Environment and Climate Change Canada; ⁴Wuhan University; ⁵U.S. EPA : ⁶TNO : ⁷AER

ABSTRACT

- Deterministic Al-driven CTM modeling system that can emulate the complex Community Multiscale Air Quality (CMAQ) modeling system to estimate ambient concentrations.
- · Development of rapid inference of physicallyinformed Top-down Emissions using the AI-driven Inverse Emissions Modeling system called Variational AutoEncoder (VAE) compared to other inverse modeling techniques, such as Adjoint and Mass Balance approaches.

C_{Conc}= 1

. = 1



METHOD

Inputs (row, column, height, time)

- Emissions
 - Sectors: Power, industry, transport, agricultural, livestock, etc.
 - Pollutants: SO₂, NOx, NH3, VOC, PMs
- Meteorology: Temperature, WS, WD, PBL, etc.
- Geography: LAI, Land cover, elevation, etc.

Outputs (row, column, height, time)

- Pollutants: SO₂, NO₂, O₃, VOC, PM_{2.5}
- Training is required with significant computing resources to learn from high-dimensional inputs
- Used limited training datasets due to the limited GPUs and CPUs memories on the highperformance computing clusters
- A couple of minutes to run the training AI models.

Variation AutoEncoder (VAE)

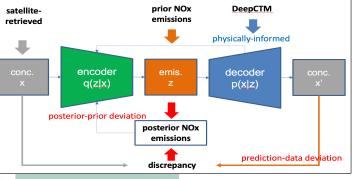
- VAE Decoder: Emissions ->Concentrations
- VAE Encoder: Concentrations → Emissions

MLP U-Net Encode Concatenate CNN h_{t-23} h_{t-22} h_{t-1} pReLU LSTM LSTM NH3 daily m LSTM (Long-Short Term NH3 daily mean grid area sca terrain height Decoder 2-meter temperature Short-wave radiation

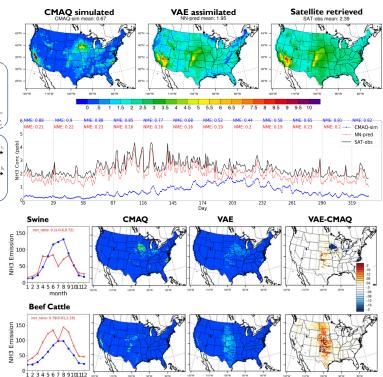
VAE Encoder Inverse Emissions System

- Trained physically-informed VAE Encoder with CTM daily concentrations and daily emissions/hourly meteorology
- Inputs: Seamless daily concentration maps of pollutants and hourly meteorology variables
- **Outputs:** Physically-informed top-down daily emissions

Variational AutoEncoder (VAE) (Xing et al., ES&T, 2022) prior NOx DeepCTM



RESULTS



CONCLUSIONS

- EPA's Livestock Ammonia (NH₃) emissions show spatially and temporally differences compared to VAE-top-down dailyNH₃
- EPA's static estimates are overall under-estimated compared to dynamically-estimated NH₃ with local meteorology
- EPA's static daily NH₃ emissions do not capture local meteorological impacts on their emissions.
- Animal-specific NH₃ comparison shows:
- Over-estimation of NH₃ from Swine over IA and NC
- Under-estimation of NH₃ from Beef cattle over the mid-U.S.
- Physically-informed top-down daily emissions can be used to guide emission's spatiotemporal patterns.
- VAE-Encoder top-down emissions rely on the quality of concentrations