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ABSTRACT

* Deterministic Al-driven CTM modeling system that

can emulate the complex Community Multiscale
Air Quality (CMAQ) modeling system to estimate
ambient concentrations.

* Development of rapid inference of physically-
informed Top-down Emissions using the Al-driven
Inverse Emissions Modeling system called
Variational AutoEncoder (VAE) compared to other
inverse modeling techniques, such as Adjoint and
Mass Balance approaches.
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METHOD

Inputs (row,column, height,time)
* Emissions
* Sectors: Power, industry, transport,
agricultural, livestock, etc.
* Pollutants: SO,, NOx, NH3, VOC, PMs
* Meteorology: Temperature, WS, WD, PBL, etc.
* Geography: LAI, Land cover, elevation, etc.

Outputs (row,column,height,time)
* Pollutants: SO,, NO,, O3, VOC, PM; 5

* Training is required with significant computing
resources to learn from high-dimensional inputs

* Used limited training datasets due to the limited
GPUs and CPUs memories on the high-

performance computing clusters
* A couple of minutes to run the training Al models.

Rapid Inference of Physically-informed Top-Down Emissions using the

Al-driven Inverse Model with Observations

Variation AutoEncoder (VAE)

e VAE Decoder: Emissions =Concentrations
* VAE Encoder: Concentrations =Emissions
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RESULTS

CMAQ simulated
CMAQ-sim mean: 0.67

Satellite retrieved

VAE assimilated
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VAE Encoder Inverse Emissions System

* Trained physically-informed VAE Encoder with CTM daily

concentrations and daily emissions/hourly meteorology

* Inputs: Seamless daily concentration maps of pollutants and
hourly meteorology variables

*  Outputs: Physically-informed top-down daily emissions

Variational AutoEncoder (VAE)
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(Xing et al., ES&T, 2022)
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CONCLUSIONS

EPA’s Livestock Ammonia (NH3) emissions show spatially and
temporally differences compared to VAE-top-down dailyNHs;
EPA’s static estimates are overall under-estimated compared to
dynamically-estimated NHs with local meteorology

EPA’s static daily NH3 emissions do not capture local meteorological
impacts on their emissions.

Animal-specific NH; comparison shows:

¢ Over-estimation of NH; from Swine over IA and NC

¢ Under-estimation of NH; from Beef cattle over the mid-U.S.
Physically-informed top-down daily emissions can be used to guide
emission’s spatiotemporal patterns.

VAE-Encoder top-down emissions rely on the quality of concentrations




