
ABSTRACT
• Deterministic AI-driven CTM modeling system that 

can emulate the complex Community Multiscale 
Air Quality (CMAQ) modeling system to estimate 
ambient concentrations.

• Development of rapid inference of physically-
informed Top-down Emissions using the AI-driven 
Inverse Emissions Modeling system called 
Variational AutoEncoder (VAE) compared to other 
inverse modeling techniques, such as Adjoint and 
Mass Balance approaches.

Variation AutoEncoder (VAE)
• VAE Decoder: EmissionsàConcentrations
• VAE Encoder: Concentrations àEmissions

RESULTS

CONCLUSIONS
• EPA’s Livestock Ammonia (NH3) emissions show spatially and 

temporally differences compared to VAE-top-down dailyNH3 
• EPA’s static estimates are overall under-estimated compared to 

dynamically-estimated NH3 with local meteorology
• EPA’s static daily NH3 emissions do not capture local meteorological 

impacts on their emissions.
• Animal-specific NH3 comparison shows: 

• Over-estimation of NH3 from Swine over IA and NC
• Under-estimation of NH3 from Beef cattle over the mid-U.S.

• Physically-informed top-down daily emissions can be used to guide 
emission’s spatiotemporal patterns.

• VAE-Encoder top-down emissions rely on the quality of concentrations
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METHOD
Inputs (row,column,height,time)
• Emissions
• Sectors: Power, industry, transport, 

agricultural, livestock, etc.
• Pollutants: SO2, NOx, NH3, VOC, PMs

• Meteorology: Temperature, WS, WD, PBL, etc.
• Geography: LAI, Land cover, elevation, etc.

Outputs (row,column,height,time)
• Pollutants: SO2, NO2, O3, VOC, PM2.5

• Training is required with significant computing 
resources to learn from high-dimensional inputs

• Used limited training datasets due to the limited 
GPUs and CPUs memories on the high-
performance computing clusters

• A couple of minutes to run the training AI models.
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VAE Encoder Inverse Emissions System
• Trained physically-informed VAE Encoder with CTM daily 

concentrations and daily emissions/hourly meteorology
• Inputs: Seamless daily concentration maps of pollutants and

hourly meteorology variables
• Outputs: Physically-informed top-down daily emissions 


