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Abstract
PM2.5 is a carcinogen and a key contributor to air pollution related deaths 
globally. The utility of miniaturized air sensors for air quality campaign is 
providing useful information for estimating PM2.5 to control air pollution in 
environments where this data will be more desirable. Till date, there is little to no 
information on the robustness of miniaturized air sensors for understanding air 
pollution at rural agricultural settings especially in emerging economies. This 
study examines the robustness of Clarity Node-S for understanding PM2.5 
pollution at two agricultural settings in rural Ghana. 

Calibration results

Field measurements

Conclusions
In homogenous environments with similar aerosol composition, correction 
factors are transferrable and useful for improving raw PM2.5 data from air 
sensors to establish baseline levels of air pollution in rural agricultural 
settings.

Site-specific data is relevant for understanding PM2.5 and models are useful 
for predicting regional air pollution.

Miniaturized air sensors if calibrated can provide useful information for 
tracking air pollution in environments previously not monitored due to 
logistical and human capacity demands.
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Upshots
Comparing the raw PM2.5 to the reference grade data from T640, we observed the nodes over-estimated PM2.5 concentrations (Figure 1). By applying the calibration 
factor using the linear model, we observed an improvement in the raw data (for the raw data, R2 = 0.82 and MAE = 11.93 μgm-3, and for the calibrated data, R2 = 0.86 
and MAE = 1.20 μgm-3). 

Observed PM2.5 daily variation compared to GEOS-CF and MERRA-2 modeled datasets to verify the suitability of the model in predicting PM2.5 pollution on a local 
scale (Figure 2). 
• The observed PM2.5 in the agricultural settings was due to anthropogenic activities considering peak hours of the day (06:00 hrs, 18:00 hrs, and 22:00 hrs). The 

models over-estimated the observations, but peak hours were similar. GEOS-CF corresponds to morning peaks while MERRA-2, to the evenings. 
• Comparing the observed PM2.5 estimates to current WHO Air Quality Guidelines, we observed that the 24-hour limits were exceeded at all the sites except for SF 

(Figure 3).
• The MLR as shown in previous studies (Malings et al, 2019; Raheja et al., 2022) have shown to improve the raw PM2.5 data.
• In environments with limited monitoring capabilities and logistical demands, miniaturized sensors can provide useful information for establishing baseline
information on PM2.5 levels as shown in Raheja et al., 2022 comparable to national or international standards (e.g., WHO Air Quality Guidelines).

Figure 1: Time series plot for raw (purple), calibrated (orange), and reference grade PM2.5 on hourly data.

Figure 2: Diurnal trend plot for calibrated PM2.5 values at the agricultural settings in the Ashanti Region using modelled (GEOS-CF and 
MERRA-2) and calibrated Clarity Node-S data where geofc represents GEOS-CF PM2.5 values for Fumesua (red); geosc for GEOS-CF 
PM2.5 for Sokwai (grey); merrafc for MERRA-2 PM2.5 for Fumesua (green); merrasc for MERRA-2 PM2.5 for Sokwai (purple); Fumesua 
Farm (ff – blue); Fumesua Community (fc – dark green); Sokwai Farm (sf – orange); and Sokwai Community (sc – black) from August 
28 to December 19, 2022. Top panel represents day and hour; left bottom represents hour; middle bottom represents month; and 
right bottom represents weekday. 

Figure 3: 24-hour time series plot for calibrated PM2.5 values at the agricultural settings in the Ashanti Region with the black dash 
horizontal line showing WHO AQG threshold for PM2.5 (15): at Fumesua Farm (ff - green); Fumesua Community (fc – grey); Sokwai Farm (sf 
– orange); and Sokwai Community (sc – purple) from August 28 to December 19, 2022 

Table 1: Study site and IDs

Disclaimer: Miniaturized air sensor used here refers the colloquial “low-cost” sensor

X: elmar_gameli, email: collins.hodoli@uga.edu/ cghodoli@gmail.com

Desired  Attribute Clarity Node-S Reason

Detect PM2.5 during burning and other agricultural activities ? Determine the impacts of slash and burn and other 
agricultural activities on PM2.5 pollution

Detect PM2.5 at rural settings ? Examine the robustness of the nodes in  reporting  PM2.5 
data from complex and varying sources in rural settings

Detect spikes/ episodes of PM2.5 ? Examine the robustness of the nodes in reporting PM2.5 in 
natural events e.g., harmattan

Withstand harsh environmental conditions ? Examine the performance of the nodes for long-term 
deployment

Suitability of GEOS-CF and MERRA-2 to estimate localized 
PM2.5 pollution compared to miniaturized air sensor data 

? Whether modeled data can provide PM2.5  estimates at a 
smaller scale

Research Objectives:
o Determine the robustness of miniaturized air sensors (Clarity Node-S) in reporting PM2.5 at rural agricultural 

settings.
o Provide evidence of PM2.5 estimates at rural agricultural settings using miniaturized air sensors (Clarity Node-S).

o Co-locate Clarity Node-S at a regional representative 
site for 4 weeks (University of Ghana, Accra).

o Used MLR to develop a transferrable calibration factor 
bearing in mind
o Aerosol composition
o Particle size
o Particle distribution 
o Impacts of Temp and RH

Rural 
agricultural 

setting

Co-location with 
Teledyne API PM 

Mass Monitor

Data type Model Average Time (hour) R2 MAE (μgm-3)

Clarity_raw MLR 1 0.82 11.93

Clarity_calibrated MLR 1 0.86 1.20

Table 1: Multiple Linear Regression (MLR) Model and Statistical Metrics

Co-efficient Variable Estimate Estimate Std Error

a Clarity_raw 0.48 0.01

b Temperature 0.01 0.07

c Relative Humidity -0.09 0.02

d Intercept 8.60 2.99

Table 2: Estimated co-efficient and corresponding error statistics

Linear equation for calibration:
Eqn 1: [Calibrated]PM2.5 = 0.48*[Clarity_raw]PM2.5 + 0.01*Temp + (-0.09)*RH + 8.60

Transferrable 
estimated 
errors for 

calibration
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