Preliminary Insights from Ground-Based Particulate Matter Monitoring in the Primary Target Areas of the Multi-Angle Imager for Aerosols (MAIA) Investigation: A Focus on Developing Countries

Sina Hasheminassab¹, David J. Diner¹, Araya Asfaw², Jeffrey Blair³, Sagnik Dey⁴, Rebecca Garland⁵, Pratima Gupta⁴, L. Drew Hill³, Fahad Imam⁴, Christina Isaxon⁶, Juanette John⁷, Kristy Langerman⁸, Yang Liu⁹, Christian L'Orange¹⁰, Tesfaye Mamo², Randall V. Martin¹¹, Lotta Mayana¹², Mogesh Naidoo⁷, Christopher Oxford¹¹, Jeremy Sarnat⁹

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA; ²Addis Ababa, Ethiopia; ³AethLabs, San Francisco, CA; ⁴Indian Institute of Technology Delhi, Delhi, India; ⁵University of Pretoria, Pretoria, South Africa; ⁶Lund University, Lund, Sweden; ⁷Council for Scientific and Industrial Research, Pretoria, South Africa; ⁸University of Johannesburg, Johannesburg, South Africa; ⁹Emory University, Atlanta, GA; ¹⁰Colorado State University, Fort Collins, CO; ¹¹Washington University, St. Louis, MO; ¹²University of the Witwatersrand, Johannesburg, South Africa

2022-2023.

- > NASA and the Italian Space Agency (Agenzia Spaziale Italiana, ASI) are jointly implementing the Multi-Angle Imager for Aerosols (MAIA) mission. The NASA-sponsored part of the science investigation will explore the association between PM types and adverse health outcomes. > A set of 11 Primary Target Areas (PTAs) around the world has been selected for conducting the MAIA investigation. concentrations at 1-km spatial resolution. > Fabrication of the MAIA instrument was completed in October 2022 and its launch is anticipated to occur in 2025 with a nominal
- 3-year mission duration.

Primary Target Areas (PTAs) are chosen by the MAIA Science Team for conducting and supporting the MAIA health studies (3-4 satellite observations/week)

Secondary Target Areas (STAs) are areas of interest (e.g., cities with major pollution, aerosol source regions, climatically important cloud regimes), but where health studies are not mandated (1-4 satellite observations/week)

MAIA Ground-Based PM Monitoring Network

- > Regression of retrieved aerosol properties against surface monitor data is used to calibrate the aerosol-to-PM transformations
- \succ Where available, MAIA collects data from existing ground-based monitoring networks. > MAIA project has deployed additional surface PM monitors in selected PTAs to augment existing monitoring networks.

Existing monitoring networks

Various vendors

PM_{2.5} speciation

USA-Atlanta

Vendor

Pollutants Total PM_{2.5}/PM₁₀

filter-based sampler

(SPARTAN network)

ETH-AddisAbaba (x2)

PM_{2.5} speciation

CHN-Beijing (x1)

AirPhoton

(AMOS)

University

Colorado State

PM_{2.5} speciation

CHN-Beijing (x1)

ETH-AddisAbaba (x2)

microAeth Outdoor Sampler MA350

AethLabs Total PM₂₅ Black carbon CHN-Beijing (x1) ETH-AddisAbaba (x2) IND-Delhi (x1) USA-Los Angeles (x1)

Example Photos of MAIA Ground-Based PM Monitoring Sites SS5i-PM_{2.5} sampler Aerosol Mass Outdoor microAeth MA350 (SPARTAN Network) Sampler (AMOS) aethalometer New Delhi, India Gurugram, India Amity Universit Haifa, Israel New Delhi, India 672 Centurion, S. Africa

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California www.nasa.gov

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

© 2024. Government sponsorship acknowledged.

- Australia

- PA-II-SD
- PurpleAir ETH-AddisAbaba (x10)
- PurpleAir PA-II-SD Sensors

Preliminary Ground-Based PM Monitoring Results

- **Comparison of Total PM_{2.5} Levels Across PTAs** > The World Bank categorizes countries by Gross National Income (GNI) per capita: low income (LI), lower-middle income (LMI), upper-middle income (UMI), and high income (HI).
- \blacktriangleright Average ambient PM_{2.5} levels in 2022-2023 were highest in developing countries, while the lowest in high-income countries.
- > IND-Delhi PTA showed the highest average PM_{2.5}, over two times higher than the second highest PTA, ETH-AddisAbaba.

Temporal Trends of Total PM_{2,5} in Developing PTAs

- IND-Delhi
- experiences peak PM₂₅ levels during winter (Oct-Feb) and lower levels during the monsoon season (Jun-Sep), with diurnal trends peaking during the morning rush hours and at night.

- \succ ETH-AddisAbaba observes a significant morning peak in PM_{2.5} during rush hours, with a secondary peak in the evening, especially pronounced from May to Sep. \succ ZAF-Johannesburg exhibits marked diurnal variation in PM_{2.5}, particularly in winter (JJA), with
- levels fluctuating up to threefold within a day. \succ CHN-Beijing displays relatively modest diurnal and seasonal PM_{2.5} trends compared to other
- developing countries.

Spatial Trends of Total PM_{2.5} in Developing PTAs

- \succ In CHN-Beijing, PM_{2.5} levels are higher in Tianjin, Baoding, and Tangshan than in Beijing. \succ In IND-Delhi, the highest PM_{2.5} levels are observed in and around New Delhi, decreasing with distance from the city.
- \succ In ZAF-Johannesburg, PM_{2.5} is generally highest in the densely populated Gauteng Province and lowest in smaller cities in other provinces (e.g., North West). \succ In ETH-AddisAbaba, PM_{2.5} levels are higher in western and southern part of the city.

> The MAIA satellite instrument will collect targeted measurements of aerosol microphysical properties. > Satellite retrievals will be integrated with measurements from a network of ground-based PM monitors and outputs of a chemical transport model to generate daily maps of near-surface total PM₁₀, total PM_{2.5}, and speciated PM_{2.5} (sulfate, nitrate, organic carbon, elemental carbon, and dust) mass

> The ground-based ambient PM data collection has begun in all PTAs. This poster summarizes the preliminary PM monitoring results collected in

Preliminary Ground-Based PM Monitoring Results

Comparison of Speciated PM_{2.5} Levels Across PTAs

- \blacktriangleright Ambient PM₂₅ exhibits diverse chemical compositions across PTAs.
- The highest levels of elemental carbon are found in developing regions, particularly in African PTAs, where it constitutes 20-45% of the total PM_{2.5} mass.
- > In ESP-Barcelona, ISR-TelAviv, and ETH-AddisAbaba, dust comprises a major fraction of PM_{25} , accounting for 25-40%.
- > Organic carbon makes up 20-50% of the PM_{2.5} mass across PTAs, with the largest fraction observed in USA-Atlanta.

- \succ BC levels show substantial variation across PTAs.
- Average BC levels in IND-Delhi and ETH-AddisAbaba (US Embassy, Jacros) are 14 and 8 times higher than those measured in USA-LosAngeles, respectively.
- > Diurnal trends are influenced by the strength of emission sources and meteorological conditions

Acknowledgments

- > The MAIA project utilizes in-situ PM monitoring data provided by various organizations, including the China National Environmental Monitoring Centre (CNEMC), the Central Pollution Control Board's Continuous Ambient Air Quality Monitoring Stations (CAAQM) in India, Israel's Ministry of Environmental Protection, Arpa Lazio and Arpae Emilia Romagna in Italy, the Catalan Institute for Water Research (ICRA) through ISEO/Gencat, the European Environment Agency (EEA), the Environmental Protection Administration of Taiwan (MOENV), South Africa's South African Air Quality Information System (SAAQIS), PurpleAir, the U.S. EPA's Air Quality System (AQS), AirNow, the Institute for Environmental Assessment and Water Research (IDAEA) in Spain, the SPARTAN network managed by Washington University, Colorado State University, and AethLabs.
- \succ The MAIA project is grateful to the field team members involved in the installation, operation, and maintenance of the air monitoring equipment, as well as those involved in laboratory analysis and data processing.
- > The US Agency for International Development (USAID) has provided funding to supplement MAIA's activities in Africa.
- > The US Department of State (DOS) facilitates shipments of equipment and consumables. DOS also hosts some of the air monitoring equipment at embassy sites. > This research was carried out, in part, at the Jet Propulsion Laboratory, California Institute of
- Technology, under contract with NASA.

MAIA website: maia.jpl.nasa.gov **Contact information:** Sina Hasheminassab (Sina.Hasheminassab@jpl.nasa.gov)

