S2S Prediction: Advances and Challenges

Frédéric Vitart, Magdalena Balmaseda, Inna Polichtchouk, Christopher Roberts, Steffen Tietsche, Jonathan Day

Toward Minimizing Early Model Biases and Errors in S2S Predictions – 5th June 2024

INDEX

•Overview of S2S sources of predictability

•S2S prediction: current status and progress over recent years

•Challenges for S2S prediction

•Opportunities for improved S2S prediction

Sub-seasonal to Seasonal Predictability

Adapted from: iri.columbia.edu/news/qa-subseasonal-prediction-project

CCECMWF Toward Minimizing Early Model Biases and Errors in S2S Predictions – 5th June 2024

Sources of sub-seasonal and seasonal predictability

Mariotti et al., 2019 Main sources of predictability include:

- MJO
- ENSO/IOD
- **Land Surface**
- Stratospheric variability (e.g. SSW)
- **Rossby waves**
- SSTs/Sea-ice
- Others?

Toward Minimizing Early Model Biases and Errors in S2S Predictions - 5th June 2024

Madden Julian Oscillation

Sources of predictability such as the MJO create windows of opportunity for skillful sub-seasonal forecasts.

CCECMWF Toward Minimizing Early Model Biases and Errors in SgS Predictions - 5th June 2024

Impact of the MJO on weather regimes

MJO teleconnections are modulated by ENSO: stronger during El-Nino years and weaker during La-Nina (Lee et al. 2020).

100 200 2500 (m)

Cassou C,2008: Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523-527.

Sudden Stratospheric Warming

2009 SSW event

Impact on geopotential height

Kozubeck et al. 2020

22/01/2009

28/01/2009

01/03/2009

29.1

CCECMWF Toward Minimizing Early Model Biases and Errors in S $\frac{2}{5}$ S Predictions – 5th June 2024

S2S Prediction

The WWRP/WCRP S2S Database

Contributing Centres to S2S database O Data provider (11) O Archiving centre (3)

- 1.5 degree grid
- Same format
- 3 weeks behind real-time (2 days for ECMWF)
- Archived at ECMWF, CMA and IRI

www.s2sprediction.net

https://confluence.ecmwf.int/display/S2S

S2S Forecast Skill Scores

S2S Multi-model 2018-2023 RPSS – 2-meter temperature

 $0.1...0.3$

 $0.3...0.6$

 > 0.6

 $-0.3...0.1$ $-0.1...05$ $-0.5...0.0$ $0.0...0.05$ $0.05...0.1$

 $-0.6...0.3$

 < -0.6

Forecast skill. Are we improving? Forecast skill. Are we improving?

Operational S2S prediction at ECMWF

Changes since 2004

Forecast skill. Are we improving?

ECMWF Medium-range Ensemble System

T850 hPa ENS performance

Forecast skill. Are we improving?

Biases relative to ERA5 in ECMWF S2S re-forecast - DJF – WEEK 4

 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline -0.5. & 0.0 & 0.5 & 0.5. & 1.0 \ \hline \end{array}$

 $-2.0 - 1.0$

 $-1.0 - 0.5$

 $-4.0...-2.0$

 $-4.0C$

20"W OFE 20"E 40"E 80"E 100"E 120"E 140"E 160"E
Toward Minimizing Early Model Biases and Errors in S2S Predictions in S2S Predictions – 5th June 2014 Predictions – 5th June 2014 Predictions – 5th June 2014 Predictions – 5t

 $2.0...4.0$

 $> 4.0C$

 $1.0.. 2.0$

⁴ Forecast skill. Are we improving?

Tropics

ECMWF Model

MJO forecast skill has improved with gain of about 2 days of predictive skill on average since 2015

15 Forecast skill. Are we improving?

Significant improvement in week 2 (day12-18) No significant improvement for Weeks 3+4 (day 19-32) !

Challenges for S2S Prediction

Representing Teleconnections

Stan et al., 2017

also stratosphere/troposphere, Poles/High latitude teleconnections, land atmosphere interaction …

CCECMWF Toward Minimizing Early Model Biases and Errors in S2S Predictions – 5th June 2024

2mtm anomaly composites week 3 after MJO Phase 3

Vitart, 2017

Stan et al. , 2022

S2S models capture

MJO teleconnection

weak over the North

Euro-Atlantic sector

generally well the

patterns, but the amplitude of the

pacific and

years.

No significant

1 **O**ecasts underestimate the ENSO modulation of MJO-regime interactions

ERA5

Lee et al. (2019) demonstrated that MJOregime teleconnections depend on the ENSO background state.

- Tropospheric teleconnection associated with increased NAO+ frequency following MJO phase 3/4 is stronger during El Niño vears but suppressed during La Nina
- NAO- events following MJO phase 7/8 occurs later in the MJO phase cycle during La Niña vears due to an enhanced stratospheric teleconnection pathway mediated by variations in the strength of the polar vortex
- Reforecasts do not reproduce this modulation

Forecasts underestimate the ENSO modulation of MJO-regime interactions

- Lee et al. (2019) demonstrated that MJOregime teleconnections depend on the ENSO
- background state.

Regime frequency conditioned on ENSO and the phase of the MJO at different lags (1980-2020)

Reforecast

 mmn

- Tropospheric teleconnection associated 1. with increased NAO+ frequency following MJO phase 3/4 is stronger during El Niño years but suppressed during La Nina.
- 2. NAO- events following MJO phase 7/8 occurs later in the MJO phase cycle during La Niña years due to an enhanced stratospheric teleconnection pathway mediated by variations in the strength of the polar vortex.
- 3. Reforecasts do not reproduce this modulation.

Regime frequency conditioned on ENSO and the phase of the MJO at different lags (1980-2020)

Roberts et al. 2023

Representing MJO Teleconnections

Representing MJO Teleconnections

- Several studies (e.g. Zhou et al. 2020) have shown that the eastward extension of the Pacific sub-tropical jet has a significant impact on the MJO teleconnections.
- In the extended-range forecast, the climatological position of the jet stream is moving westward with lead time.
- Similar error in most S2S models

Zonal Wind at 300 hPa

Day 8-14

21 Understanding Sources of Errors: Relaxation experiments

$$
\frac{\partial a}{\partial t} = -\mathbf{v} \cdot \nabla a + Q_a^p - \frac{a - a_{obs}}{\tau},
$$
\na = {T,u,v}
\n τ = 12 hours
\na_{obs} = ERA5

Impact on 2m temp CRPSS – WEEK 4

TROPICS (10N-10S) Stratosphere (above 50 hPa)

- 20-year reforecasts
- Once a week DEC-JAN
- 11 members
- Tco319L137

See also:

- Jung et al, 2010
- Dias et al, 2021

Understanding Sources of Errors: Relaxation experiments

Composites of Z500 anomalies 10-15 days after MJO Phase 3

22

ERA5 Control (CY48R1) Tropics

MJO in tropical relaxation experiment

Vitart and Balmaseda, 2024

23 Understanding Sources of Errors: Relaxation experiments

NAO index 3 pentads after MJO Phase 3

Relaxation experiments suggest multiple sources of errors for MJO teleconnections:

- Errors in the Tropics (about 50%)
- Representation of the jet stream
- Errors over the North Atlantic (about 30%)

Vitart and Balmaseda, 2024

Representing MJO Teleconnections

Errors in the Representation of the MJO in S2S models

- S2S models tend to have an MJO which is too weak (up to 40%) and propagating too slowly
- Maritime Continent Barrier (Kim et al., 2016) possibly linked to SST and precipitation biases in the region.

Impact of North Atlantic SST biases

SST biases in western north Atlantic can affect MJO teleconnection pathway

CCECMWF Toward Minimizing Early Model Biases and Errors in S2S Predictions – 5th June 2024

Teleconnection patterns well represented, but impact in models is too weak.

Land-atmosphere Interaction

Soil-moisture-atmosphere coupling too strong in C3S forecasts of JJA

 $I_{SM-t2m} = \sigma(t2m)\rho(S, ME)\rho(E, t2m)$

2-legged soil-moisture-temperature coupling metric of Lorenz et al., 2015/Dirmeyer et al. 2014

a) observed I_{SM-t2m}

c) multi-model bias in I_{5M-t2m}

Figures from Jonny Day (ECMWF)

Trends in S2S forecasts

Trend (K / year)

Trënd (K / year)

 -0.18

 -0.26

 Ω

2mtm Trends in ERA5 Trends in ECMWF re-forecasts – WEEK 4

Trend of Jan/Feb 2m temperature in ERA5 from 2000 to 2019

Important trend should pass 3 criteria (stippling otherwise)

- 1. Robustness I: non-zero trend (Wilcoxon signed-rank test on weekly trends)
- 2. Robustness II: sensitivity to leaving out single years < 10%
- 3. Importance: total variance explained by trend > 10%

 $\overline{}$

3

Weekly reforecasts in Jan/Feb 2000-2019 with IFS Cycle 47r1:

Severe under-estimation of ERA5 trend in Eurasian Arctic: 1 K per decade instead of 2.5 K per decade by week 6

Opportunities

Opportunities

- Increased resolution: *Not a major driver for improved skill so far, but increased horizontal resolution can improved representations of blockings, Rossby wave packets in the Extratropics (Quinting, 2019). Importance of stratospheric resolution (Domeisen et al, 2020). Km-scale resolution?*
- Increased model complexity
- Improved observing systems
- Improved DA methods (e.g. coupled DA)
- Machine learning methods

Impact on skill scores

Benedetti and Vitart, 2018

$\frac{1}{2}$ $\frac{1}{2}$ impact of In-situ Ocean obs on sub-seasonal forecasts

NHEM

14704 1200 erf200

 $w₂₀₀$

TROPICS

No Insitu - Control

Overall degradation of biases when removing in-situ observations

Impact on atmospheric biases Impact on mean state week4. Nov starts

SST

Balan-Sarojini et al, submitted to Frontiers of Marine Science, special issue

Cooling of surface temperature, except for the high latitudes

Improved observing System GNSS-Radio Occultation impact on S2S prediction

S2S Re-forecast experiments with and without GNSS-RO assimilated

U at 10 hPa Biases

CRPSS Score

Use of AI/ML method for S2S prediction

Skill Scores

 0.0

 10

20

Forecast lead time (days)

 30

 40

SHEM

Deterministic AIFS vs IFS (47R3): mean state and biases

Mean Absolute bias increased in AIFS

The WMO S2S AI/ML Challenge Use of AI/ML method for S2S prediction post-processing

- **• Challenge: Provide forecasts of near surface temperature and precipitation for weeks 3+4 and 5+6 more skilful than ECMWF operational forecasts for the year 2020.**
- Hosted by Swiss Data Science Center at ETH Zürich, **with ECMWF support through the new European Weather Cloud for data access to S2S forecasts, the use the CliMetLab software and the provision of virtual machines to some participants from developing countries**.
- Timeline: June-November 2021
- **• All codes and forecasts are open source** to foster community learning on AI/ML methods for S2S
- 30k Swiss Francs prize from WMO

OSES WCRP **WAP**

CCECMWF ASDSC

Outcome of the competition:

- 49 registered teams
- 5 teams succeeded in providing better forecasts than the Benchmark (ECMWF S2S operational forecasts)
- Top 3 teams got rewarded a prize.

RPSS Score - YEAR 2020

Use of AI/ML method for online error correction

Online bias correction: Applying 6-hourly bias climatology in S2S hindcasts

- *• Q: Do anomaly forecasts improve if large-scale biases are corrected online?*
- Mean bias improved by 10-20%.
- Anomalies improved by 1-3% for week 1 and 2, not a lot of improvement for extended-range.
- Small 1-3% improvement to NINO indices, not much impact on other indices.
- Work ongoing towards **flow-dependent** online bias correction.

19890115-20161215

Model nudging
tendency ΔQ_{α} state a $-\frac{a-a_{obs}}{\tau}$ = ML target $\Delta Q_a = -$ Observational analysis a_{obs} $a = \{T, u, v\}$ τ = 12 hours a_{obs} = ERA5 (wavenumbers 0-21)

Nudging experiments

Bias scorecards show changes in mean absolute bias aggregated over grid points/start dates.

The RMSE score cards are based on anomalies relative to the reforecast climatology (i.e. they do not include contributions from mean bias).

Conclusions

•Model biases have been considerably reduced over the past 20 years, but S2S forecast skill for week 3 and 4 has not improved significantly.

•Need for better understanding of origin of model errors which affect teleconnections.

•Multiple sources of errors affect the representation of MJO teleconnections making progress a very slow process.

•Machine learning might be an opportunity to better understand sources of model errors, and correct flow-dependent model errors a posteriori or during the model integration.

> **SC ECMWF** Toward Minimizing Early Model Biases and Errors in S2S Predictions – 5th June 2024