S2S Prediction: Advances and Challenges

Frédéric Vitart, Magdalena Balmaseda, Inna Polichtchouk, Christopher Roberts, Steffen Tietsche, Jonathan Day

Toward Minimizing Early Model Biases and Errors in S2S Predictions – 5th June 2024

INDEX

•Overview of S2S sources of predictability

•S2S prediction: current status and progress over recent years

•Challenges for S2S prediction

•Opportunities for improved S2S prediction

Sub-seasonal to Seasonal Predictability

Adapted from: iri.columbia.edu/news/qa-subseasonal-prediction-project

ECMWF Toward Minimizing Early Model Biases and Errors in S2S Predictions – 5th June 2024

Sources of sub-seasonal and seasonal predictability

Main sources of predictability include: Mariotti et al., 2019

- MJO
- ENSO/IOD
- Land Surface
- Stratospheric variability (e.g. SSW)
- Rossby waves
- SSTs/Sea-ice
- Others?

Toward Minimizing Early Model Biases and Errors in S2S Predictions – 5th June 2024

Madden Julian Oscillation

Sources of predictability such as the MJO create windows of opportunity for skillful sub-seasonal forecasts.

ECMVF Toward Minimizing Early Model Biases and Errors in SgS Predictions – 5th June 2024

Impact of the MJO on weather regimes

MJO

teleconnections

are modulated

by ENSO:

stronger during

El-Nino years and weaker

during La-Nina

(Lee et al. 2020).

Oscillation and the North Atlantic Oscillation. Nature, 455, 523-527.

Sudden Stratospheric Warming

2009 SSW event

Impact on geopotential height

Kozubeck et al. 2020

ECMWF Toward Minimizing Early Model Biases and Errors in S²/₇S Predictions – 5th June 2024

S2S Prediction

The WWRP/WCRP S2S Database

- 1.5 degree grid
- Same format
- 3 weeks behind real-time (2 days for ECMWF)
- Archived at ECMWF, CMA and IRI

www.s2sprediction.net

	Time-range	Resol.	Ens. Size	Freq.	Hcsts	Hcst length	Hcst Freq	Hcst Size
ECMWF	D 0-46	Tco319L137	101	daily	On the fly	Past 20y	2/weekly	11
UKMO	D 0-60	N216L85	4	daily	On the fly	1993-2016	4/month	7
NCEP	D 0-44	N126L64	4	4/daily	Fix	1999-2010	4/daily	I
ECCC	D 0-32	~39 km 85 levels	21	weekly	On the fly	2001-2020	weekly	4
BoM	D 0-60	T47L17	33	2/weekly	Fix	1981-2013	6/month	33
JMA	D 0-34	TL319L100	5	daily	Fix	1991-2020	2/month	5
КМА	D 0-60	N216L85	8	daily	On the fly	1993-2016	4/month	7
СМА	D 0-60	T266L56	4	2/week	On the fly	Past 15y	2/week	4
CNRM	D 0-47	T359L91	25	weekly	Fix	1993-2017	weekly	10
CNR-ISAC	D 0-32	T359L91	25	weekly	Fix	1993-2017	weekly	10
HMCR	D 0-46	0.0×0.72	41	weekly	Fix	1991-2015	weekly	П
IAP-CAS	D 0-65	C96L32	16	daily	Fix	1999-2018	daily	4
CPTEC	D 0-35	TA126L42	11	2/week	Fic	1999-2018	weekly	11

https://confluence.ecmwf.int/display/S2S

S2S Forecast Skill Scores

S2S Multi-model 2018-2023 RPSS – 2-meter temperature

Day 12-18

0.1.. 0.3

0.3.. 0.6

> 0.6

-0.1..-.05 -.05.. 0.0 0.0..0.05 0.05.. 0.1

-0.3..-0.1

-0.6..-0.3

<-0.6

Operational S2S prediction at ECMWF

Changes since 2004

	2004	2024
Model Physics	CY28R1	CY48R1
Horiz. resolution	110km	32km
Vertic. resolution	42	137
Ocean resolution	1 deg. – L29	¼ deg. L75
Sea-ice	Persisted	Sea-ice model coupling
Ensemble size	51m	101m
Frequency	Once a week	Daily

ECMWF Medium-range Ensemble System

T850 hPa ENS performance

Biases relative to ERA5 in ECMWF S2S re-forecast - DJF – WEEK 4

-2.0..-1.0

-1.0..-0.5

-4.0..-2.0

<-4.0C

2mtm

-0.5.. 0.0 0.0.. 0.5

0.5.. 1.0

2.0.. 4.0

> 4.0C

1.0.. 2.0

Tropics

ECMWF Model

MJO forecast skill has improved with gain of about 2 days of predictive skill on average since 2015

Extratropics

Significant improvement in week 2 (day12-18) No significant improvement for Weeks 3+4 (day 19-32)!

Challenges for S2S Prediction

Representing Teleconnections

Stan et al., 2017

also stratosphere/troposphere, Poles/High latitude teleconnections, land atmosphere interaction ...

ECMVF Toward Minimizing Early Model Biases and Errors in S2S Predictions – 5th June 2024

2mtm anomaly composites week 3 after MJO Phase 3

Vitart, 2017

Stan et al. , 2022

S2S models capture

teleconnections is too

weak over the North

Euro-Atlantic sector

progress over past 10

generally well the MJO teleconnection

patterns, but the

amplitude of the

pacific and

years.

No significant

1 Decasts underestimate the ENSO modulation of MJO-regime interactions

Lee et al. (2019) demonstrated that MJOregime teleconnections depend on the ENSO background state.

- I. Tropospheric teleconnection associated with increased NAO+ frequency following MJO phase 3/4 is stronger during El Niño years but suppressed during La Nina.
- NAO- events following MJO phase 7/8 occurs later in the MJO phase cycle during La Niña years due to an enhanced NV stratospheric teleconnection pathway mediated by variations in the strength of the polar vortex.
- Reforecasts do not reproduce this modulation.

Forecasts underestimate the ENSO modulation of MJO-regime interactions

- Lee et al. (2019) demonstrated that MJOregime teleconnections depend on the ENSO
- background state.

Regime frequency conditioned on ENSO and the phase of the MJO at different lags (1980-2020)

Reforecast

- Tropospheric teleconnection associated with increased NAO+ frequency following MJO phase 3/4 is stronger during El Niño years but suppressed during La Nina.
- NAO- events following MJO phase 7/8 occurs later in the MJO phase cycle during La Niña years due to an enhanced stratospheric teleconnection pathway mediated by variations in the strength of the polar vortex.
- 3. Reforecasts do not reproduce this modulation.

Regime frequency conditioned on ENSO and the phase of the MJO at different lags (1980-2020)

Roberts et al. 2023

Representing MJO Teleconnections

Representing MJO Teleconnections

- Several studies (e.g. Zhou et al. 2020) have shown that the eastward extension of the Pacific sub-tropical jet has a significant impact on the MJO teleconnections.
- In the extended-range forecast, the climatological position of the jet stream is moving westward with lead time.
- Similar error in most S2S models

Day 15-21

Day 22-28

Understanding Sources of Errors: Relaxation experiments

$$\frac{\partial a}{\partial t} = -\mathbf{v} \cdot \nabla a + Q_a^p - \frac{a - a_{obs}}{\underbrace{\tau}_{\Delta O_a}},$$

$$a = \{T, u, v\}$$

$$\tau = 12 \text{ hours}$$

$$a_{obs} = ERA5$$

Impact on 2m temp CRPSS – WEEK 4

TROPICS (10N-10S)

Stratosphere (above 50 hPa)

- 20-year ٠ reforecasts
- Once a week . **DEC-JAN**
- 11 members ٠
- Tco319L137 ٠

See also:

- Jung et al, 2010 ٠
- Dias et al, 2021

21

Understanding Sources of Errors: Relaxation experiments

Composites of Z500 anomalies 10-15 days after MJO Phase 3

ERA5

22

Control (CY48R1)

Tropics

MJO in tropical relaxation experiment

Vitart and Balmaseda, 2024

Understanding Sources of Errors: Relaxation experiments

NAO index 3 pentads after MJO Phase 3

Relaxation experiments suggest multiple sources of errors for MJO teleconnections:

- Errors in the Tropics (about 50%)
- Representation of the jet stream
- Errors over the North Atlantic (about 30%)

Vitart and Balmaseda, 2024

Representing MJO Teleconnections

Errors in the Representation of the MJO in S2S models

- S2S models tend to have an MJO which is too weak (up to 40%) and propagating too slowly
- Maritime Continent Barrier (Kim et al., 2016) possibly linked to SST and precipitation biases in the region.

Impact of North Atlantic SST biases

SST biases in western north Atlantic can affect MJO teleconnection pathway

ECMWF Toward Minimizing Early Model Biases and Errors in S2S Predictions – 5th June 2024

Teleconnection patterns well represented, but impact in models is too weak.

Land-atmosphere Interaction

Soil-moisture-atmosphere coupling too strong in C3S forecasts of JJA

 $I_{SM-t2m} = \sigma(t2m)\rho(S, ME)\rho(E, t2m)$

2-legged soil-moisture-temperature coupling metric of Lorenz et al., 2015/Dirmeyer et al. 2014

a) observed I_{SM-t2m}

c) multi-model bias in I_{SM – t2m}

Figures from Jonny Day (ECMWF)

Trends in S2S forecasts

Trend (K / year)

-0.18

0.26

2mtm Trends in ERA5

Trend of Jan/Feb 2m temperature in ERA5 from 2000 to 2019

Important trend should pass 3 criteria (stippling otherwise)

- 1. Robustness I: non-zero trend (Wilcoxon signed-rank test on weekly trends)
- 2. Robustness II: sensitivity to leaving out single years < 10%
- 3. Importance: total variance explained by trend > 10%

Weekly reforecasts in Jan/Feb 2000-2019 with IFS Cycle 47r1:

Severe under-estimation of ERA5 trend in Eurasian Arctic: 1 K per decade instead of 2.5 K per decade by week 6

Tietsche et al, 2024

Opportunities

Opportunities

- Increased resolution: Not a major driver for improved skill so far, but increased horizontal resolution can improved representations of blockings, Rossby wave packets in the Extratropics (Quinting, 2019). Importance of stratospheric resolution (Domeisen et al, 2020). Km-scale resolution?
- Increased model complexity
- Improved observing systems
- Improved DA methods (e.g. coupled DA)
- Machine learning methods

Impact on skill scores

Benedetti and Vitart, 2018

Impact of In-situ Ocean obs on sub-seasonal forecasts

Impact on atmospheric biases

		535 107				NH	EM			TRO	PICS										
-	*			Lead (days)	5-11	12-18	19-25	26-32	5-11	12-18	19-25	26-32									
	+	-	-	tprate		*					*										
	*			2t																	
	-	-		c+11						_	-	1									
-	-	*		SUT																	
-	1	-	1	msl	*	*	*	*	•		•	v									
			1	u850							*	*									
Sig. incre	nane (95	56)	÷	v850	*		٠				*	*									
				t850				*		*	*										
Nol	nsitu	- Ref		u500	*																
				v500	*			*			*	*									
				t500				*													
				z500	*						•										
				u200		*			•		*	*									
				v200				*													
				t200		¥		*		*											
				strf200	•		•	•	•			٣									
				vp200						12											
				rws200		Ŧ		*				Ψ.									
				u50	*	*		۲	•		*										
				v50						3	٣										
				t50							*	v									
				sst	•	•	•		•	•	•	۲									
						Increase	е		V	Decrease											
				ref=0.05 (max=0.5)		Sig. inci	rease (9	5%)		V Sig. decrease (
						N.L.			C		1										

NHEN

1200

ws200

TROPICS

No Insitu - Control

Overall degradation of biases when removing in-situ observations

Impact on mean state week4. Nov starts

SST

Balan-Sarojini et al, submitted to Frontiers of Marine Science, special issue

Cooling of surface temperature, except for the high latitudes

Improved observing System GNSS-Radio Occultation impact on S2S prediction

S2S Re-forecast experiments with and without GNSS-RO assimilated

U at 10 hPa Biases

With GNSS-RO

CRPSS Score

Use of AI/ML method for S2S prediction

Deterministic AIFS vs IFS (47R3): mean state and biases

Skill Scores

SHEN

Sig. increase (95%

MJO evaluation using u200/u850 index

Use of AI/ML method for S2S prediction post-processing The WMO S2S AI/ML Challenge

- Challenge: Provide forecasts of near surface temperature and precipitation for weeks 3+4 and 5+6 more skilful than ECMWF operational forecasts for the year 2020.
- Hosted by Swiss Data Science Center at ETH Zürich, with ECMWF support through the new European Weather Cloud for data access to S2S forecasts, the use the CliMetLab software and the provision of virtual machines to some participants from developing countries.
- Timeline: June-November 2021
- All codes and forecasts are open source to foster community learning on AI/ML methods for S2S
- 30k Swiss Francs prize from WMO

Outcome of the competition:

- 49 registered teams
- 5 teams succeeded in providing better forecasts than the Benchmark (ECMWF S2S operational forecasts)
- Top 3 teams got rewarded a prize.

RPSS Score – YEAR 2020

Use of AI/ML method for online error correction

Online bias correction: Applying 6-hourly bias climatology in S2S hindcasts

- Q: Do anomaly forecasts improve if large-scale biases are corrected online?
- Mean bias improved by 10-20%.

Bias score: ia5g vs hvhi

- Anomalies improved by 1-3% for week 1 and 2, not a lot of improvement for extended-range.
- Small 1-3% improvement to NINO indices, not much impact on other indices.
- Work ongoing towards flow-dependent online bias correction.

19890115-20161215

Bias scorecards show changes in mean absolute bias aggregated over grid points/start dates.

The RMSE score cards are based on anomalies relative to the reforecast climatology (i.e. they do not include contributions from mean bias).

		N	NHEM TROPICS		5	SHEM			NATL				EUF	OPE			ΔRMSE (%): ia5q vs hvhi						19890115-20161215																				
Lead (days)	5-11	12-1	8 19-	25 26	i-32	5-11	12-18	19-25	26-32	5-11	12-1	18 19-2	5 26-32	5-11	12-1	3 19-25	26-32	5-11 12-18 19-25 26-32			NHEM					OPICS			SF	IEM		NATL					EUROPE						
tprate	•				•			4			*			*					•			Lead (days	s) 5-1	1 12	-18 1	9-25	26-32	5-11	12-14	19-25	5 26-32	5-11	12-18	19-25	26-32	5-11	12-18	19-25	26-32	5-11	12-18	19-25	26-32
2t			4		A																	tprat	e 🔻		•	•	*		•	•					~			•			v	•	-
msl			4		A				~													2	2t 🔻		•		•								~	•		•	A		•		
u850					A																~	m	sl 🔻		<u>م</u>	A	•	•		*		•			*			*					-
v850					•																	u85	0 🔻		× 1		*	•			-	•			▼		•	▲					
t850																						v85	0 🔻	, I	A		v.			4	*	•			A			•	A				•
	-	-				-	-		-	-	-		-	-		-		-		-	-	t85	0 🔻	·	•	٠	*	\checkmark	•		*	•				•		•	A	▼	~	v	•
0500	-		-		A		-	-	A	•	^			A		•		•	•	*	î.	u50	0 🔻	·	•		*		•			•			~	•			•	V			~
v500	A	^	4	N (1)	A		*	A	•	•	A				•		•		*	•	*	v50	0 🔻		<u>۸</u>	+						•	*			-		V		W			•
t500			4				•	*									V				*	t50	0 🔻	·	*	•	v	V	•			•	~			V		•				▼	
z500			4		A			4			-			A			Δ.					z50	0 🔻		A	*	*	•	•		-	•	*		*	•		*	4	•		*	•
u200			4		A			4	*													u20	0 🔻		•	•	•	•	•			•	•		*		~				•		•
v200			4	× .	A								۵		-		▲	۵				v20	0 🔻		*		▼		•			V	•			\blacksquare			*			v	
t200			/		A																	t20	0 🔻		▼	•	•		•	•	•	•	•		-		•			▼		•	
strf200					A									-	-							strf20	0 🔻	·	•	*	•	•	•			•	•		A	•	•		•			*	•
			-				-	-	-		-					-	-				-	vp20	0 🔻		\checkmark	•	•	-						*		•						•	-
vp200	-	V			•				•						V		•					rws20	0 🔻		V	•							•			V			•				•
rws200	1	^	4		^	A	•	1	^		4	1	^	A .	1		^	A	A		A	u5	0 🔻		~	▲		•	•	•	•	•				\blacksquare	$\mathbf{\nabla}$		\bigtriangledown				$\mathbf{\nabla}$
u50			. 4																			v5	0		V	•	•	•		•		•					$\mathbf{\nabla}$	*	•	\bigtriangledown	*		$\overline{}$
v50			4	4	4	4			A								▲					t5	0 🦷	, I	V	۵							•			\checkmark			V			-	
t50																						55	st 🔹		v		*			•	•			A	▲		*			~	*	_	
sst																							ci 🔻		V	•	•						*			*	•	W	*	•	W	W	
ci																			v		*			Inci	rease				Decre	ase													
																						ref=1	L	Sig	increa	se (95%	%)	Ť	Sia. de	ecrease	(95%)												
		Increa	ase				Decreas	se														(max=)	10)					•															
ref=0.05 (max=0.5)		Sig. ir	ncrease	e (95%)			Sig. deo	rease (95%)																																		

Nudging experiments

Conclusions

•Model biases have been considerably reduced over the past 20 years, but S2S forecast skill for week 3 and 4 has not improved significantly.

•Need for better understanding of origin of model errors which affect teleconnections.

•Multiple sources of errors affect the representation of MJO teleconnections making progress a very slow process.

•Machine learning might be an opportunity to better understand sources of model errors, and correct flow-dependent model errors a posteriori or during the model integration.

ECMWF Toward Minimizing Early Model Biases and Errors in S2S Predictions – 5th June 2024