Methane and CO2 emission attribution from space with EMIT and aircraft using AVIRIS-3 for calibration and validation

Andrew K. Thorpe^{1*}, Robert O. Green¹, Philip G. Brodrick¹, Red Willow Coleman¹, Jay E. Fahlen¹, K. Dana Chadwick¹, Adam Chlus¹, David R. Thompson¹, Michael L. Eastwood¹, et al.

¹Jet Propulsion Laboratory, California Institute of Technology, USA *Andrew.K.Thorpe@jpl.nasa.gov

> © 2024 California Institute of Technology. Government sponsorship acknowledged.

Remote measurement of GHG enhancements using NASA imaging spectrometers has a long track record

Airborne CH₄ observations from AVIRIS, 2008

Thorpe et al., 2013

Multi-sector methane observations with AVIRIS-NG across California, 2019

Observations from EMIT sensor from international space station, starting 2022 AVIRIS-3 CH₄ observations begin in western US, 2023

Thompson et al., 2016

Duren et al., 2019

Thorpe et al., 2023

Coleman et al., in prep.

EMIT measures mineral spectral fingerprints

EMIT also measures CH_4 and CO_2 spectral fingerprints!

-0.4 -0.6

-0.8 Pov −1.0

-1.2

2200

Daily coverage varies (~1,300,000 • km²)

CO₂ spectral fingerprint

CO₂ from power plants (China)

5

Sciences Advances publication: EMIT methane and CO2

SCIENCE ADVANCES | RESEARCH ARTICLE

ATMOSPHERIC SCIENCE

Attribution of individual methane and carbon dioxide emission sources using EMIT observations from space

Andrew K. Thorpe^{1*}, Robert O. Green¹, David R. Thompson¹, Philip G. Brodrick¹, John W. Chapman¹, Clayton D. Elder¹, Itziar Irakulis-Loitxate^{2,3}, Daniel H. Cusworth^{4,5}, Alana K. Ayasse^{4,5}, Riley M. Duren^{1,4,5}, Christian Frankenberg⁶, Luis Guanter^{2,7}, John R. Worden¹, Philip E. Dennison⁸, Dar A. Roberts⁹, K. Dana Chadwick¹, Michael L. Eastwood¹, Jay E. Fahlen¹, Charles E. Miller¹

Carbon dioxide and methane emissions are the two primary anthropogenic climate-forcing agents and an important source of uncertainty in the global carbon budget. Uncertainties are further magnified when emissions occur at fine spatial scales (<1 km), making attribution challenging. We present the first observations from NASA's Earth Surface Mineral Dust Source Investigation (EMIT) imaging spectrometer showing quantification and attribution of fine-scale methane (0.3 to 73 tonnes CH_4 hour⁻¹) and carbon dioxide sources (1571 to 3511 tonnes CO_2 hour⁻¹) spanning the oil and gas, waste, and energy sectors. For selected countries observed during the first 30 days of EMIT operations, methane emissions varied at a regional scale, with the largest total emissions observed for Turkmenistan (731 ± 148 tonnes CH_4 hour⁻¹). These results highlight the contributions of current and planned point source imagers in closing global carbon budgets.

Attribution of CH₄ (and CO₂) emissions to different emission sectors

Data products relevant to super-emitters

Level 2B: CO2 plumes

(planned)

ORNL DAAC

Open science repositories: ¹<u>https://github.co/emit-sds</u> ²<u>https://github.com/emit-sds/emit-ghg</u>

Level 2B: CO2

(planned)

enhancement maps

Level 3: CO2 emission rates

with uncertainties (planned)

Data visualization through U.S. GHG Center

U.S. GHG CENTER

DATA CATALOG DATA ANALYSIS DATA INSIGHTS HUB

CONTACT US LEARN ABOUT

U.S. Greenhouse Gas Center

Uniting Data and Technology to Empower Tomorrow's Climate Solutions

>1,250 EMIT CH₄ plumes

U.S. GHG

CENTER

DATA CATALOG DATA ANALYSIS DATA INSIGHTS HUB

ethane enhancement (nnm

PUBLISHED ON AUG 23, 2023

Discovering Large Methane Emission Events with Remote Measurement

A new generation of satellite and airborne instruments can now detect methane emissions

> >150 EMIT CO₂ plumes identified to date, but not yet published

EMIT identifies CH₄ emissions from energy sector

United States (Permian, oil&gas)

EMIT identifies CH₄ emissions from energy sector

Turkmenistan (oil&gas)

China (coal mines)

EMIT CH₄ results can be unexpected

Continued need for aircraft studies (AVIRIS-NG, GAO)

nature

US oil and gas system emissions from nearly one million aerial site measurements

Evan D. Sherwin^{1,6}[∞], Jeffrey S. Rutherford^{1,7}, Zhan Zhang¹, Yuanlei Chen¹, Erin B. Wetherley², Petr V. Yakovlev², Elena S. F. Berman², Brian B. Jones², Daniel H. Cusworth³, Andrew K. Thorpe⁴, Alana K. Ayasse³, Riley M. Duren^{3,4,5} & Adam R. Brandt¹

Science

Quantifying methane emissions from United States landfills

Daniel H. Cusworth^{1,2*}, Riley M. Duren^{1,2,3}, Alana K. Ayasse¹, Ralph Jiorle¹, Katherine Howell¹, Andrew Aubrey¹, Robert O. Green³, Michael L. Eastwood³, John W. Chapman³, Andrew K. Thorpe³, Joseph Heckler⁴, Gregory P. Asner⁴, Mackenzie L. Smith⁵, Eben Thoma⁶, Max J. Krause⁶, Daniel Heins⁶, Susan Thorneloe⁶

AVIRIS-3 for improved CH₄ and CO₂ mapping from aircraft

Parameter	AVIRIS-NG	AVIRIS-3	Improved capability
Swath samples	600	1240	Wider coverage
Swath angle	34° FOV	40° FOV	
Ground sample distance (GSD)	0.3-20 m	0.3-20 m	Smaller GSD for same altitude
SNR @ 2200 nm	>1000	>1200	Increased signal

First flights began in July 2023; Greenhouse gas plumes observed across emission sectors

Ongoing work by Willow Coleman

EMIT and AVIRIS-3 cal/val

Coincident observations

Controlled release experiments

AVIRIS-3:

- Multiple flow rates $(1, 4, 7, 10 \text{ kg CH}_4 \text{ hr}^{-1})$
- Multiple ground sampling distance (0.5, 1.0, 2.5, 4.0 m pixels)

EMIT: planned Stanford controlled releases starting in Sep. 2024

Expanding use of EMIT greenhouse gas data

Current

Planned

- ESA MEDUSA (Methane Emission Detection Using Satellites Assessment) project
- U.S. EPA Super Emitter Program (pending technology approval)

Thank you!