

Mission Design and Introduction to the First Korean Spaceborne Methane Monitoring Project: Narsha

¹Hayoung Park*, ²Jinyoung Shin, ²Geuk-Nam Kim, ²Jae-Pil Park, ¹Jaemin Hong, ²Kwangwon Lee, ²Seongwhan Lee, ²Jungkyu Lee, ¹Dong Yeong Chang, ¹Yu-Ri Lee, ³Young-Jun Choi, ¹Sujong Jeong,

¹Climate Lab, Graduate School of Environmental Studies, Seoul National University, South Korea ² Nara Space Technology Inc., South Korea ³Korea Astronomy and Space Science Institute, South Korea

Constellation Mission: Narsha

First Satellite of Narsha Project: K3M (Korea Methane Monitoring Microsatellite)

Target of First Launch: 2026 Q4

Project manager: Jaepil Park (Nara Space)

Project science team lead: Sujong Jeong (Seoul National University)

The Narsha Project

- First Korean methane monitoring microsatellite constellation mission specifically designed to measure methane emissions, led by a private enterprise in collaboration with various institutions.
- Initiative aligns with the Global Methane Pledge aimed at reducing methane emissions worldwide as well as to establish a dependable MRV system in the global effort to mitigate anthropogenic greenhouse gas emissions.
- By supporting methane abatement efforts, especially in East Asia, Narsha will play a crucial role in enhancing methane management practices both domestically and internationally

Mission Statement

- Develop a hyperspectral microsatellite capable of detecting methane in the atmosphere and operate it for at least three years
- Operate in a satellite constellation and establish a system to produce measurements on methane concentration and emissions in local areas (point sources) and provide data recognized as a reliable measurement method
- Monitor methane emission in local areas (point sources) and provide global data with a focus on East Asia

Mission Statement

Mission Objectives

Detect and quantify local methane sources with emissions of 100 kg/h or more

Operate a satellite constellation system to observe specific emission sources with a temporal resolution of one day

Establish a data collection, analysis, and distribution system capable of providing Level 2 to Level 4 data to customers within 4 weeks upon request

Concept of Operations

High-Level Operational Concept

Concept of Operations

Operational Node Connectivity

Microsatellite System Design

System Specification

	Contents	Performance (TBD)	Remark
Mission	Lifetime	>3 years	-
	Orbit	500~600 km / SSO	6+satellites for constellation
	Spectrum	SWIR (CH ₄ @1625-1670 nm)	Weak CO ₂ absorption
		VNIR (@400-1000 nm)	On-board cloud detection
	Detection Threshold	>100 kg/h	-
	Data Availability	L1, L2, and L4	-
	Data Delivery	<4 weeks/image	Request-to-delivery, L4
Bus	Pointing Accuracy	<+/-0.02 deg	-
	Off-Nadir Pointing	<+/-30 deg	-
	Data Downlink	Up to 200 Mbps	Up to 512 GB storage
Payload	Spectrum Resolution	<0.3 nm	SWIR FWHM
	Signal-to-Noise Ratio	>150	@Albedo 0.2 & SZA 60 deg
	Swath	>10 km x 10 km	@500 km, VNIR & SWIR
	Ground Sampling Distance	<25 m	@500 km, VNIR & SWIR
	Dimension & Mass	<12U / <15 kg	-

Microsatellite System Design

- Payload Concept
 - 2 Channel Spectrometer :
 - SWIR GHG detection
 - VNIR Target information & Cloud masking
 - Size :

<12U & 15 kg

<0.3 nm @SWIR

- Spectral resolution :
- On-board processing :
 - Data compression
 - Cloud detection & masking
 - Radiometric calibration
 - Thermal control

Payload Data Handling System Al on-board processing

Ground-Aircraft-Satellite 3D Methane Monitoring System

Data Platform – Earth Paper

EarthPap₃r

EarthPaper

Measure | Monitor | Report

Proprietary Al cloud-based platform offering cutting-edge global methane emissions reporting

Conclusion

- **Near-term Activities** ٠
 - Conduct **mission analysis** & establish **a development plan for payloads** to meet methane observation requirements & design a constellation
 - Establish **product assurance plan** for standardization of the microsatellite system to be considered for mass production
 - Identify risk factors of the project and their mitigation plans

25

20

Optical Payload Design & Analysis 12

© 2024. NARSHA PROJECT All rights reserved.

THANK YOU

NARSHA PROJECT

METHANE MONITORING SATELLITE EXPAND OUR UNIVERSE

