

An Overview of Updates for Global Ensemble Forecast System (GEFSv13) and Seasonal Forecasting System (SFSv1)

Neil Barton¹, Bing Fu¹, Philip Pegion², Avichal Mehra¹, and many others

¹NOAA/NWS/NCEP/EMC, ²NOAA/OAR/PSL

2024 MEG Meeting, June 19th, 2024

Acknowledgements to the Global UFS Community Developers

Atmospheric Physics

ž

.

R

四

 \square

212

Atmospheric Physics	Data Assimilation	Coupled Model Component Development					
NCEP/EMC: Jongil Han, Michael Barlage, Anning Cheng, Bing Fu, Hong Guan, Zhichang Guo, Sanath Kumar, Xu Li, Wei Li, Qingfu Liu, Eric Sinsky, Ruiyu Sun, Kevin Viner, Helin Wei, Bo Yang, Fanglin Yang, Rongqian Yang, Weizhong Zheng, Xiaqiong Zhou ESRL/GSL: Ben Green, Joseph Olson, Tanya Smirnova, Shan Sun, Xia Sun, Michael Toy JCSDA/UCAR:Dom Heinzeller, ESRL/PSL: Lisa Bengtsson, Jian-Wen Bao, Clara Draper, Grant Firl, Songyou Hong, Philip Pegion, Dustin Swales DTC: Ligia Bernardet, Weiwei Li, Man Zhang	NCEP/EMC: Catherine Thomas, Guillaume Vernieres, Daryl Kleist, Cory Martin, Andrew Collard, Jiarui Dong, Andy Eichmann, Travis Elless, Nick Esposito, Iliana Genkova, Azadeh Gholoubi, Tseganeh Gichamo, Brett Hoover, Xin Jin, Emily Liu, Haixia Liu, Hyun-Chul Lee, Xuanli Li, Ron McLaren, Dagmar Merkova, Sudhir Nadiga, Shastri Paturi, Ashley Stanfield, Steve Stegall, Andy Tangborn, Russ Treadon, Yaping Wang, Youlong Xia CIRES/GSL: Bo Huang, Mariusz Pagowski PSL: Clara Draper, Jeff Whitaker JCSDA/UCAR: Kriti Bhargava, Travis Sluka	NCEP/EMC: Jessica Meixner, Jiande Wang, Lydia Stefanova, Jur Wang, Yuejian Zhu, Neil Barton, Saeideh Banihashemi, Arun Chawla, Bing Fu, George Gayno, Robert Grumbine, Walter Kolczynski, Matthew Masarik, Avichal Mehra, Ali Salimi-Tarazouj, Denise Worthen ESRL/GSL: Ben Green, Shan Sun ESRL/PSL: Lisa Bengtsson, Phillip Pegion GFDL: Alistair Adcroft, Rusty Benson, Stephen Griffies, Robert Halberg, Matthew Harrison, Brandon Reichl, Marshall Ward NCAR: Alper Altuntas, Gokhan Danabasoglu, Keith Lindsay, Gustavo Marques NRL/ESMF: Gerhard Theurich GMU: Ben Cash, Jim Kinter, Lawrence Marx, Cristiana Stan FSU: Alexandra Bozec, Eric Chassignet, Alan Wallcraft NASA: Akella Santha Univ. Alaska: Katherine Hedstrom U. Mich.: Christiane Jablonowski Univ. Victoria: Andrew Shao					
Field Evaluation NCEP/EMC: Alicia Bentley, Mallory Row, Shannon Shields NWS Regional SSDs NCEP Centers	Products NCEP/EMC: Hui-Ya Chuang, Wen Meng, Andrew Benjamin, L. Gwen Chen, Yali Mao, Bo Cui						
Atmospheric Composition	Infrastructure	Coupled Model Evaluation					
NCEP/EMC: Partha Bhattacharjee, Jeff McQueen, Raffaele Montuoro, Li Pan, Ivanka Stajner ARL: Barry Baker, Patrick Campbell, Rick Saylor ESRL/GSL: Georg Grell, Shan Sun, Li (Kate) Zhang CSL: Gregory Frost, Jian He, Stuart McKeen, Siyuan Wang NESDIS/STAR: Ethan Hughes, Shobha Kondragunta, Xiaoyang Zhang	NCEP/EMC: Rahul Mahajan, Jun Wang, Kate Friedman, Lin Gan, George Gayno, Ed Hartnett, Dusan Jovic, Walter Kolczynski, Hang Lei, Terry McGuinness, Alex Reichert, Mallory Row, Edward Stafford, Henry Winterbottom, Jack Wollen, Denise Worthen Redline Performance: David Huber	NCEP/EMC: Lydia Stefanova, Jiande Wang, Michael Barlage, Neil Barton, Partha Bhattacharjee, Zhichang Guo, Robert Grumbine, Wei Li, Avichal Mehra, Ghazal Mohammadpour, Jiayi Peng, Sulagna Ray, Huug van den Dool, Helin Wei, Youlong Xia, Weizhong Zheng CPC: Laura Ciasto, Yanyun Liu, Wanqiu Wang, Jieshun Zhu ESRL/PSL: Chris Cox, Maria Gehne, Juliana Dias, Zachary Lawrence, Amy Solomon GMU: V. Krishnamurthy, Eunkyo Seo, Cristiana Stan					

NATIONAL WEATHER SERVICE

Unified Forecast System (UFS)

- Model infrastructure:
 - ESMF, NUOPC, CMEPS
- Atmosphere model:
 - FV3 dycore, CCPP Physics
- Ocean model:
 - MOM6
- Ice model:
 - CICE6
- Wave model:
 - **WW3**
- Aerosol model:
 - GOCART
- Land model:
 - Noah-MP

ž

NATIONAL WEATHER SERVICE

GEFSv13

گھ ا		GEFSv12	GEFSv13
<i>झ</i> ैं.	Atmosphere	C384L64 (~25km), FV3	C384L127, FV3
	Land	NOAH-LSM	NOAH-MP
	Aerosol	1-way coupling with GOCART, 1 member	all-way coupling with GOCART, all members
哭	Waves	1-way coupling to WAVEWATCH III	all-way coupling with WAVEWATCH III (0.25° regular lat/lon grid)
<u></u>	Ocean	None	all-way coupling with MOM6 (0.25° tripole grid, 75 layers)
13	Sea Ice	None	all-way coupling with CICE6 (0.25° tripole grid, 5 ice categories, 7 layers)

औ

R

明

Forecast Perturbations: Ocean/Sea Ice Forecast

FV3:

- SPPT: (stochastically perturbed physics tendencies Palmer et al. 2009) - Designed to represent the structural uncertainty of parameterized physics.
- SKEB: (stochastic KE backscatter Palmer et al. 2009)
- CA: (Cellular Automata) Bengtsson, L et al. 2013

MOM6:

Following Juricke et al. 2017

- oSPPT: perturbed temperature, salinity and layer thickness tendencies from vertical parameterizations
- ePBL: perturbed KE generation and dissipation rates in energetic PBL parameterization.

LAND, AEROSOLS CICE6, WAVEWATCH III:

- No perturbations
- Forced problem

POCs for Ocean Perturbations work: Philip Pegion (PSL)

Building a Weather-Ready Nation // 6

The second

MJO Skill in GEFSv13

 Ensemble Prototypes (EP) 3 and 4 both have higher MJO skill (RMM1+RMM2) than GEFSv12 for longer lead times (extend skill for 4-5 days).

512

Courtesy: Eric Sinsky

			N. America					N. Hemisphere						S. Hemisphere						Tropics						
			1 1	3	5	6	8	10	1	3	5	6	8	10	1	3	5	6	8	10	1	3	5	6	8	10
		101.D.																								
		20hPa	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M
		50hPa	IVI	IVI	VI	VI	VI	VI	IVI	111	VI	VI	VI	VI	141		VI	VI	VI	VI	141	IVI	IVI	IVI	141	141
		100hPa																								
	TTainha	200hPa																								
	Heights	500hPa					_											-								
	3	700hPa				-		-																		
	5	850hPa							-												•		-			
		1000hPa							•	•	•	•	•	•							•	•	•			
	3	10hPa		•					2							•	•	•	•	•						
		20hPa	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Μ
		50hPa																			•		•			
		100hPa					•												•	•			1.1	1.1		
Bias	Wind	200hPa				•																				
	Speed	500hPa			•	•	•			÷	•	•	•					•	•	Ĩ			ļ,		•	▼
		700hPa				•					•	•	•								•	•				
		850hPa			•	•	•			•	•	•	•					•			•					
		1000hPa													•			•								
		10hPa																								
		20hPa	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ
		50hPa																								
		100hPa																			•	•				
	Temp	200hPa																								▼
		500hPa																								
		700hPa																								
		850hPa			•	•			•	•		•	•	•	•	•			2							
		1000hPa																		T						
Γ								Se	ore	care	IS	mh	ol I	ege	nd											

	Scorecard Symbol Legend									
	GEFS_EP4 is better than GEFSv12 at the 99.9% significance level	V	GEFS_EP4 is worse than GEFSv12 at the 99.9% significance level							
*	GEFS_EP4 is better than GEFSv12 at the 99% significance level	٠	GEFS_EP4 is worse than GEFSv12 at the 99% significance level							
	GEFS_EP4 is better than GEFSv12 at the 95% significance level		GEFS_EP4 is worse than GEFSv12 at the 95% significance level							
	No statistically significant difference between GEFS_EP4 and GEFSv12		Not statistically relevant							
	Dates: 20171004-20191030									

EP4 vs GEFSv12 Reforecast Scorecard: Bias (2017-2019)

- Mid-level temperature and heights are generally better in our latest ensemble prototype (EP4) experiments
- Low-level (1000 hPa) variables in EP4 show degradation compared to GEFSv12

ž

औ

K

四日

 \square

13

SST biases in Ensemble Mean

ž

EP4 has cooler tropics than EP3: reduced warm bias
EP4 has a slightly warmer bias along the coasts compared to EP3: increased warm bias

Comparison of SST's bias and RMSE/SPRD for different domains (2 years) (Ref. OSTIA)

 For global domain, SST biases are small in EP testing. For NINO3.4, biases increase with lead days.
 SST is underspread

NATIONAL WEATHER SERVICE

ž

Sea Ice Extent Results: NH

NH: EP4 minus OBS-bootstrap

ž

- Negative bias in Sea Ice extent
- Negative bias in initial conditions

0.5

-0.5

-1.0

ŝ

nillion sq

Greater negative biases during summer melt months

> More rapid melt Ο

Results dependent on **Initial conditions**

Sea Ice Extent Results: SH

SH: EP4 minus OBS-bootstrap

- SH sea ice extent biases are larger than NH biases.
- SH sea ice extent is mostly greater than observations except during melt season period

4

2

ŝ

o million sq

-7

- Issues capturing the ice melt in SH Spring
- New sea ice initial conditions greatly aid in sea ice forecast in SH

12

Jan–Feb Ice concentration

Use of replay aid in better initialization for sea ice in southern hemisphere Experiment with new initial conditions currently running

Wave Height: QQ plots, Hs(m) Ensemble Mean/ ž **Ensemble Spread** Week 1 Forecast

GEFSv12 EP4 K ensemble mean 10 ensemble mean ensemble spread ensemble spread 8 8 DOD 6 Model Nodel 6 4 4 \square 2 2 80th 10 2 8 2 8 6 6 Observations Observations 12

- **Under prediction of** ightarrowwaves in high events.
- EP4 has similar significant wave height forecasts in waves below the 90th percentile compared to GEFSv12.

Winter 2018

औ

ž

*>

哭

⊿

51.53

NATIONAL WEATHER SERVICE

SFSv1

تختر	SFS Com	ponents	
		CFSv2	SFS
औ	Atmosphere	T126/L64, GSM	C192L127 (~50m), FV3
*>	Land	Noah 4 level soil model	NOAH-MP
	Aerosol	none	all-way coupling with GOCART (TBD)
哭	Waves	none	all-way coupling with WAVEWATCH III (TBD)
⊿	Ocean	2-way coupling with MOM4 (0.25°-0.5°, tripole grid, 40 Levels)	all-way coupling with MOM6 (0.25° tripole grid, 75 layers)
兒禽	Sea Ice	2-way coupling with SIS1 (0.5° tripole grid, 5 ice thickness categories)	all-way coupling with CICE6 (0.25° tripole grid, 5 ice categories, 7 layers)
		IER SERVICE	Building a Weather-Ready Nation // 16

NATIONAL WEATHER SERVICE

Initial SST Skill Compared to CFSv2

ž

 SST skill in Week 3&4 forecasts improves in P8 in the equatorial Pacific, with prominent improvement in the Niño 3.4 region.

POC: Sulanga Ray (EMC)

Ray et al., (Clim Dyn 2023)

NATIONAL WEATHER SERVICE

Conclusions: GEFS development

- GEFSv13
 - Atmosphere vertical levels increase to 127, forecast out to 48-days (00Z only)
 - Wave Watch III will be two way coupled in all members
 - Ocean (MOM6) and Sea Ice (CICE6) coupling on a 0.25 degree tripole grid
 - Inclusion in Aerosols (GOCART) in all members
- Forecast perturbations:
 - Atmosphere: SPPT, SKEB and CA
 - Ocean: oSPPT, ePBL
 - Aerosols, Land, Sea Ice, and Waves: none
- Initial examination of waves, ocean, sea ice results is reasonable
- Challenges:
 - Not all atmosphere variables are improved in GEFSv13 compared to GEFSv12
 - Weakly coupled data assimilation in rapid development
 - Ocean and sea ice diagnostics and products are being developed
- SFSv1 development has recently begun

12

ž

औ

KS

四日

Thank You!

neil.barton@noaa.gov

NATIONAL WEATHER SERVICE

ž

औ

 \approx

哭

 \square

12