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The stratosphere is one of the only sources of

persistent signal in the atmosphere on S2S timescales

Prediction Skill (days)

« Skillful forecasts of extratropical geopotential heights
In the stratosphere extend to lead-times ~2-3x longer
than in the troposphere.

« Extended prediction skill in the troposphere is found in
NH winter and SH spring, during periods of active
stratosphere-troposphere coupling.

 Following stratospheric polar vortex extremes,
anomalies in the lower stratosphere can persist for
weeks to months.
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Stratosphere-troposphere coupling processes are

linked to a broad range of global extremes
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There are known model biases that may affect

stratosphere-troposphere coupling
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 Generally similar week 4 biases
across S2S prediction systems:
1) Polar vortex wind/T bias in winter
hemisphere
2) Extratropical UTLS cold bias
3) Global-mean stratospheric warm
bias
 Models with lower model lid height
on average show larger biases

Temperature biases

Zonal Wind biases

Composites of biases and mean absolute errors at week 4,
verified against ERA-Interim, from Lawrence et al. (2022)




Subseasonal Hindcast Datasets

Model biases can lead to poor representation of
stratosphere-troposphere coupling.

e Focus primarily on hindcasts in S2S database
o Also use NOAA GEFSv12, CESM2-CAM,
CESM2-WACCM where possible

e Systems with high-top vs low-top models
o High-top = having a model lid at or above

0.1 hPa with several levels above 1 hPa.
o Low-top systems are usually highlighted
with dotted lines or asterisks

e Determine biases relative to ERAS reanalysis

o Leadtime-dependent climatologies for each
model are removed

Subseasonal-to-Seasonal

&SeS

Prediction Project

Possible analyses are limited by the S2S
Database data only being provided on a
sparse set of stratospheric levels

(100, 50, and 10 hPa).



Breaking stratosphere-troposphere coupling in the

NH into upward and downward processes....




1) Upward flux of wave activity from troposphere to

stratosphere

Regression of 500hPa heat flux (days 11-22) with
100hPa heat flux , DJF

With normal west-to-east winds,
planetary waves can travel freely.
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Only the largest Rossby waves (wavenumbers 1-2) S2S models underestimate upward flux of largest
can travel into the stratosphere atmospheric waves from troposphere into stratosphere.

From the NOAA Polar Vortex Blog on Climate.gov Garfinkel et al. 2024, in prep




2) Polar stratospheric winds respond to upward flux

of atmospheric waves

Now, planetary waves break against east-to-west “roadblock”, Regression c?oefﬂuent of 1OQhPa heat flux (days 11-22),
. . h with polar cap height at 10hPa, DJF
reversing winds in the layer below.
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Combination of stratospheric vortex state and strength/location
of tropospheric waves can cause waves to break, depositing
easterly momentum and slowing the stratospheric winds.

S2S models underestimate sensitivity of polar
stratospheric winds to upward wave flux

From the NOAA Polar Vortex Blog on Climate.gov Garfinkel et al. 2024, in prep




3) Downward coupling from the mid to lower

stratosphere

Planetary waves break at lower and Correlation coefficient of 10 hPa polar-cap height
lower altitudes in the stratosphere. (days 9-12), with 100 hPa polar cap height, DJF
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Wave-mean flow interactions drive the downward propagation S2S models underestimate magnitude of
of anomalies within the stratosphere. downward coupling within the stratosphere.

From the NOAA Polar Vortex Blog on Climate.gov Garfinkel et al. 2024, in prep




4) Downward coupling from the lower stratosphere

to troposphere

Planetary waves are confined to the troposphere, Regression coefficient of 100hPa polar cap height

where weather occurs. (days 9-12) with 850hPa polar cap height, DJF
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Persistent anomalies in lower stratospheric winds Some S2S systems overestimate downward coupling from the
likely drive feedbacks with tropospheric eddies that lower stratosphere to the surface (in part due to systematic
affect weather patterns for weeks to months. positive bias in variance of 850 hPa polar cap heights)

From the NOAA Polar Vortex Blog on Climate.gov Garfinkel et al. 2024, in prep




Summary of S2S model biases in stratosphere-

troposphere coupling

regres(Sa) summary of biases in coupling strength [percent difference compared to subsampled ERAS5], = NH DJF 2024, in prep
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In the NH winter, most S2S models underestimate upward wave coupling and
downward coupling within the stratosphere. A few models overestimate
downward coupling to the lower troposphere.




Conclusions

 The NH polar vortex in most S2S forecasting systems is insufficiently coupled to
tropospheric variability.

* This result is consistent with the too-weak impact of predictable tropospheric modes of

variability such as the Madden Julian Oscillation on the stratosphere (Garfinkel et al.
2020, Stan et al. 2022).

* We find that these processes are better captured in models with less bias in the
climatological quasi-stationary waves and higher model tops.

* The implications of poor coupling for surface climate and predictability in specific regions
where the stratosphere is known to have a large impact need to be explored.

Questions/Comments?
Contact: amy.butler@noaa.gov or chaim.garfinkel@mail.huji.ac.il
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S2S models underestimate upward flux of

atmospheric waves
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