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• Rising temperature leads to anomalies skewed toward warmth
• Extended periods of warmth are more common—more persistent warm anomalies
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Anomalies from 1958-2018 base stateAnomalies from 1999-2018 base state

“Trend anomaly” leads to more persistent warm 
anomalies

21-day lag-covariance of 500-hPa geopotential heights for 1999-2018 

Any data-driven machine learning method is prone to learning warm biases 
and persistent warm stretches in the data

m2



Understand how the temperature trend impacts S2S 
forecast tools and skill evaluation

– Improve week 3-4 Temperature outlooks
– Compare IFS operational model, Linear Inverse Model (LIM), 

and Optimal Climate Normals (OCN)
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Objective
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Method: 3 forecast models and verification

Operational IFS forecast
• uses anomalies derived from fair-sliding 20-year climate of retrospective forecasts

Linear Inverse Model (LIM) v2.0
• approximates S2S variability as linear stochastically forced dynamics
• is trained using JRA-55 data from 1958 to 2016
• uses anomalies from fair-sliding 20-year climate

Optimal Climate Normals (OCN)
• calculates the running average of the last 10 years as forecasts
• uses the same JRA-55 anomalies from fair-sliding 20-year climate 

Verification
• Forecasts are verified against JRA-55 using the same IFS forecast dates in 2017-2022

Risbey et al. (2021)
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• uses anomalies derived from fair-sliding 20-year climate of retrospective forecasts

Linear Inverse Model (LIM) v2.0
• approximates S2S variability as linear stochastically forced dynamics
• is trained using JRA-55 data from 1958 to 2016
• uses anomalies from fair-sliding 20-year climate

Optimal Climate Normals (OCN)
• calculates the running average of the last 10 years as forecasts
• uses the same JRA-55 anomalies from fair-sliding 20-year climate 

Verification: Heidke Skill Score (HSS)
• Forecasts are scored against JRA-55 using the same IFS forecast dates in 2017-2022

Risbey et al. (2021)
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Weeks 3-4 T2m Heidke skill, verified against WMO 30-year climatology

CONUS: 0.21

CONUS: 0.27

Weeks 3-4 real-time T2m Heidke skill score, 2017-2022

IFS
Operational 
bias-corrected

LIM
Post-training 
period
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IFS

LIM

Verified against WMO 30-yr climate

Weeks 3-4 T2m HSS, Nov-Apr 2017-2022

Verified against fair sliding 20-yr climate

Verifying against anomalies from WMO 30-yr 
climatology could inflate forecast skills
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Are model skills inflated by the warming trend?
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• Trend is an issue for making S2S machine learning tools and proper 
skill evaluation
– Relative to a fixed long-term climate, recent anomalies are skewed toward 

warmth and are more persistent
– A fair-sliding climate mitigates this issue

• Models exhibit a conditional bias, showing better skill in predicting 
warm events

• When designing an empirical forecasting system, we need to 
balance between operational priorities and forecasting accuracy.
– We could maximize skill by including trend or
– W could degrade skill and perhaps have a model that can differentiate 

between cold and warm forecasts more skillfully
23

Lessons Learned
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THANK YOU. QUESTIONS?
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LIM can capture variations of IFS skill from similar 
sources of predictability

LIM vs IFS

T2m Weeks 3-4 HSS  2020
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But maybe we are kidding ourselves, since the trend has 
a huge impact on S2S skill…

LIM vs IFS

“Trend 
forecast” vs IFS 

T2m Weeks 3-4 HSS  2020
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Are model skills inflated by the warming trend?

Cold events Warm events
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Models are more skillful in predicting warm events

Warm events

Cold Events

HSS Histogram

frequency

frequency
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Warm events

Cold events

OCN are not so good at predicting cold events

HSS Histogram

frequency

frequency
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LIM

IFS

Verified against anomalies from the 
WMO 30-yr climate

Verifying against anomalies from WMO 30-yr 
climatology could inflate forecast skills

Weeks 3-4 T2m Heidke score, Nov-Apr 2017-2022

Verified against anomalies from fair sliding 
20-yr climate
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LIM

IFS

Verified against official 30-yr climate

Verifying against official 30-yr climatology could 
inflate forecast skills

Weeks 3-4 T2m Heidke skill, May-Oct 2017-2022

Verified against fair sliding 20-yr climate



IFS

PER

LIM

OCN



35

Average anomalies of the sliding mean
‘Remaining trend from the sliding climatology’   

Nov-Apr

May-Oct

All months

2017-2022



LIM 2.0: mean state is ‘fair-sliding’ 20-yr climate

Variable Domain PCs

Temperature at 2m North America  (24ºN-74ºN)  7

Soil moisture North America (24ºN-74ºN) 5

Pressure at mean sea level Northern Hemisphere (20°N – 90°N) 20

Tropical sea surface temps Global Tropics (14°S – 14°N) 8

Tropical heating Global Tropics (14°S – 14°N) 23

500-hPa Geopotential height Northern Hemisphere (20°N – 90°N) 14

700-hPa streamfunction Northern Hemisphere (20°N – 90°N) 8

100-hPa streamfunction Northern Hemisphere (30°N – 90°N) 8

We added new variables to to respond 
to forecasters’ need – diagnosis of 
forecasts – and to potentially improve 
skill.

We extended training period to 
1958-2016 

Trend is a significant part of the 
anomaly!

Partial solution: “fair-sliding” 20-yr 
climate: Fixed for 1958-1977, then 
increments a year at a time (e.g., 1990 
anomalies relative to 1970-1989 mean)


