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Introduction



Motivation

There are oscillatory modes in the climate system important
on subseasonal-to-seasonal timescales, such as the monsoon
intraseasonal oscillation (MISO) and the Madden–Julian
oscillation (MJO).

Often predictable from data beyond current dynamical models.

How to use data-driven forecasts of these modes to improve
overall forecasts?
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Oscillatory modes in Asian monsoon rainfall

The monsoon intraseasonal oscillation (MISO) is a
northward-propagating rainfall mode of period ∼45 days.

Controls active and break phases and regional distribution of
monsoon rainfall.

Essential for subseasonal-to-seasonal prediction with
relevance to agriculture, flooding, and water availability.
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Combining ML forecasts of oscillatory modes
with full-field physical forecasts

The full field admits a modal decomposition; i.e., through
singular spectrum analysis (Ghil et al. 2002):

P(x, t) =
∑
i

Pi(x, t) (1)

The intraseasonal oscillations can be identified as a subset of
these modes, defining a reduced subspace.

The dynamics in this subspace are effectively low-dimensional:
can be learned well by ML (e.g., Alexander et al. 2017; Chen
et al. 2018; Krishnamurthy and Sharma 2017).

However, these predictions are not useful by themselves, since
they only predict a fraction of the total variance of the full field.

4 / 15



Combining ML forecasts of oscillatory modes
with full-field physical forecasts

The full field admits a modal decomposition; i.e., through
singular spectrum analysis (Ghil et al. 2002):

P(x, t) =
∑
i

Pi(x, t) (1)

The intraseasonal oscillations can be identified as a subset of
these modes, defining a reduced subspace.

The dynamics in this subspace are effectively low-dimensional:
can be learned well by ML (e.g., Alexander et al. 2017; Chen
et al. 2018; Krishnamurthy and Sharma 2017).

However, these predictions are not useful by themselves, since
they only predict a fraction of the total variance of the full field.

4 / 15



Combining ML forecasts of oscillatory modes
with full-field physical forecasts

The full field admits a modal decomposition; i.e., through
singular spectrum analysis (Ghil et al. 2002):

P(x, t) =
∑
i

Pi(x, t) (1)

The intraseasonal oscillations can be identified as a subset of
these modes, defining a reduced subspace.

The dynamics in this subspace are effectively low-dimensional:
can be learned well by ML (e.g., Alexander et al. 2017; Chen
et al. 2018; Krishnamurthy and Sharma 2017).

However, these predictions are not useful by themselves, since
they only predict a fraction of the total variance of the full field.

4 / 15



Combining ML forecasts of oscillatory modes
with full-field physical forecasts

The full field admits a modal decomposition; i.e., through
singular spectrum analysis (Ghil et al. 2002):

P(x, t) =
∑
i

Pi(x, t) (1)

The intraseasonal oscillations can be identified as a subset of
these modes, defining a reduced subspace.

The dynamics in this subspace are effectively low-dimensional:
can be learned well by ML (e.g., Alexander et al. 2017; Chen
et al. 2018; Krishnamurthy and Sharma 2017).

However, these predictions are not useful by themselves, since
they only predict a fraction of the total variance of the full field.

4 / 15



Mapping from full phase space to reduced subspace is
non-invertible.

Tools from data assimilation can be used to inform the full
phase space state from ML forecasts in the reduced subspace!
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Methods and data



Ensemble Oscillation Correction

2. Project 
ensemble onto 
MISO subspace

3. Weight ensemble 
members

1. Data-driven MISO forecast

1. Integrate physical ensemble forward

MISO subspace

Physical ensemble

Idea (Bach et al. 2021): weight ensemble members of a physical
model by their distance from an ML forecast in the
corresponding subspace.

Similar idea to importance sampling in particle filters: give
more weight to ensemble members most likely to result in a
predicted MISO pattern.
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Methods

Extracted MISO from India Meteorological Department
0.25°gridded rainfall observations since 1901 using
multi-channel singular spectrum analysis (M-SSA).

Projection into oscillation subspace approximated using a
neural network.

Analog forecasts in reduced subspace.

Ensemble members weighted using EnOC.
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Integrated Forecasting System

We use bias-corrected Integrated Forecasting System (IFS)
hindcasts from the ECMWF, started on the first of July, August,
and September in the years 2008–2016.

Coupled model with 25 ensemble members, ∼36 km resolution
and 91 vertical levels.

IFS has been shown to be state-of-the-art in subseasonal
monsoon prediction. It has outperformed all other models to
which it has been compared for this task (Jie et al. 2017; Vigaud
et al. 2017).
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Results



ML MISO forecasts are skillful for over a month
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Skill improvement by using ML forecasts of MISO

We combine a dynamical ensemble of precipitation over South
Asia with a data-driven forecast of MISO.

15-day mean rainfall

Baseline: ECMWF bias-corrected ensemble rainfall forecasts
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Regional improvements in skill
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Conclusions



Conclusions

By applying EnOC to the South Asian monsoon, we can
outperform state-of-the-art forecasts on 10–30 day lead times.

A demonstration that data-driven forecasts can significantly
improve physical model forecasts when combined.

Future work: Application to other important modes of climate
variability, in particular the Madden–Julian Oscillation and El
Niño.

EnOC is a way of combining physical
model forecasts with data-driven
forecasts. Can be generalized using
the Multi-Model Ensemble Kalman
Filter (Bach and Ghil 2023).

Dynamical ensemble 
at time t

Dynamical ensemble 
at time t+1

Dynamical model
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ML ensemble at 
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time t+1Observations
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Predictability of MISO

Various studies have demonstrated predictability of MISO
using data-driven methods (Krishnamurthy and Sharma 2017;
Alexander et al. 2017).

The data-driven methods generally predict MISO better than
models.

Figure 1: From Krishnamurthy and Sharma 2017
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Singular spectrum analysis

SSA is a form of principal component analysis applied to
delay-embedded time-series data. Multivariate version called
multi-channel SSA (M-SSA)
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When the physical model is perfect, its forecast from the last
analysis is the best we can do.

Observation

Analysis

Forecast

Truth

Time
t t+1 t+2 t+3

Past observational record provides no extra information
(ho_bayesian_1964):

p(x(t) | y(t − 1), . . . , y(0)) = p(x(t) | xa(t − 1)) (2)

If model is imperfect, ML can bring in helpful information from
the past about the system’s dynamics.
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Ensemble Oscillation Correction (EnOC)

• Generally, in ensemble forecasting, we weight members
equally.

• However, what if we have some reason to believe some
ensemble members are better than others?

• We can forecast oscillations accurately using data-driven
methods.

• Idea: for ensemble mean, weight members by members’
distance from a data-driven oscillation forecast.

• Simple choice works well: pick out best m′ ensemble
members, exclude the rest. m′ is picked based on
historical record.

• More sophisticated weighting: EnOC with data assimilation
(EnOC-DA)
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Big picture

We can draw upon three sources of information to make a
forecast of a system:

1. A dynamical model based on theory

2. A historical record of observations of the system
3. Observations of the system’s current state

(1) and (3) is traditional DA.

(2) and (3) is DA applied to an ML model.

(1) and (2) is, e.g., physics-informed neural networks.

The MM-EnKF is a framework and methodology to combine all
three.
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Multi-model data assimilation

• The multi-model Kalman filter assimilation step is

xa = Pa
( M∑
m=1

GTm
(
Pfm
)−1

xfm + HTR−1y
)
, (3)

where

Pa =
( M∑
m=1

GTm
(
Pfm
)−1

Gm + HTR−1H
)−1

. (4)

• Now, the weights for each model m are inversely
proportional to Pfm. If we set M = 1, we recover the regular
Kalman filter equations.
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Monsoon intraseasonal oscillations

• One theory for the northward propagation involves a
vertical shear mechanism (Jiang, Li, and Wang 2004):

• Convection + easterly vertical shear induces a barotropic
vorticity anomaly north of convection.

• This vorticity anomaly leads to low-level moisture
convergence, and a northward shift of convection.

Figure 2: From Goswami 2012
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