Multi-Pronged Approaches
for Addressing Model Biases

Relevant to S2S Predictions
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Addressing three sources of model biases

* The climate mean states
* The S2S modes of variability (MoV)

* Relationship between MoV and surface climate and
extreme events

Through model calibration and diagnostics
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Model calibration strategy: short perturbed physics experiments (PPE)

Target fast response of physical processes (e.g., turbulence, microphysics,
shallow and deep convection) — select 18 tunable parameters
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Six regions over land and ocean GEWEX Cloud System Study (GCSS) Pacific
Cross-section Intercomparison (GPCI)
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Relative contributions of different parameters to the
total variance in the six regions on Day 5
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Relative contributions of different parameters to the total variance
along the GPCI transect on Day 5

a Parametric Sensitivity of day005 SWCF b Parametric Sensitivity of day005 LWCF
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Using ML Surrogates as part of an efficient calibration process

Lays the groundwork for rigorous Bayesian UQ

Surrogate for SWCF error
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Calibrate / Optimize Reduced Order m
parameters Representations "1l § :

Build ML surrogate

POC: Wagman

EEEEEEEEEEEE


https://e3sm.org/
https://e3sm.org/

(E3SM

Energy Exascale
Earth System Model

Using ML Surrogates as part of an efficient calibration process

Percent change of 44 bias metrics at calibrated
parameter values compared to previous tuning

Variable DJF MAM JJA SON Avg.
Results for E3SMv2: LWCF 9.7 LS 04 100 4.7
6 S parameters PRECT 9.5 4.1 =i 11.8 6.3
P PSL 4.3 P=s9l  —53 PZigollr=ss
o 350 ensemble members RELHUM | —1.7 0.3 1.9 0.4 0.2
o 44 climate metrics SWCF 5.1 —0.3 —6.2 2.0 0.1
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Improved tropical variability in v3
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Improving QBO in E3SMv3

* The QBO bias was not appreciably improved by any member of the perturbed parameter
ensemble, pointing to the need for model enhancements.

e Redesigning the vertical layers made E3SM more responsive to parameter tuning. The new grid
was added in time for its release as part of E3SMv3.

e Our workflow revealed an opportunity to expose new physics parameters and further refine the
vertical grid for a better QBO.
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Automated calibration of SCREAM at 3km  EC'P =

* SCREAM needs a full exascale machine to run at 1 SYPD; how can we afford to calibrate?

* Short 2-5 day forecasts can capture emergent cloud properties, and are affordable
* We calibrated 16 atm physics parameters to minimize a cost function of 30 cloud metrics using 300

SCREAM runs on Frontier.

Rendering of clouds from a SCREAM simulation
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US Climate Modeling Summit project: Is Better Representation of Modes of Variability
Related to Reduced Biases and Better Simulations of Extreme Events in US Climate Models?

Pl: Gokhan Danabasoglu

Methods

The Climate Variability Diagnostics Package for large ensembles is
used to evaluate climate modes in observations and models.

The package leverages the opportunities provided by LEs to:

1) remove the forced response to avoid aliasing of the forced response
2) quantify the ensemble spread and average in mode benchmarks

3) confidently assess inter-model contrasts and inter-generational
changes in model fidelity,

4) estimate the limits of the observational record in sampling climate
modes (e.g. finding that intrinsic noise in the IPO limits the utility of
100-yr records in model evaluation).

Ensemble Sizes:

CESM1 (40), CESM2 (100), E3SM1 (14), E3SM2 (21), GISS E2.1-G (46)
GISS E2.1-H (25), GISS E2.2-G (10), GISS E2.2-H (5), GFDL CM4 (20)
GFDL ESM2M (30), GFDL SPEAR (30)

(Fasullo et al. 2024 JCLIM)

NCAR

CESM
COMMUNITY EARTH
NCAR ’ SYSTEM MODEL

Home  Aboutv WhatWeDov Models v Working Groups v  Events v News

Climate Variability Diagnostics
Package for Large Ensembles (CVDP-
LE)

Version Information

The Climate Variability Diagnostics Package for Large Ensembles (CVDP-LE) developed by
NCAR's Climate Analysis Section is an automated analysis tool and data repository for
exploring internal and forced contributions to climate variability and change in coupled
model “initial-condition” Large Ensembles and observations.

The package computes a wide range of modes of interannual-to-multidecadal variability in
the atmosphere, ocean and cryosphere, as well as long-term trends and key indices of
global and regional climate. Diagnostics include the ensemble-mean (i.e,, forced response)
and ensemble-spread (i.e,, internal variability) of each model, as well as quantitative
metrics comparing the models to observations. All diagnostics and metrics are saved to a
data repository for later use and analysis.

The CVDP-LE User's Guide provides general background on initial-condition Large
Ensembles, detailed documentation of all diagnostics and metrics in the package, and
guidance on interpreting the results. Instructions for downloading and running the CVDP-LE
are provided on the Code page and readme file, respectively.

The CVDP-LE can be applied to any suite of observational data, model simulations and time
periods specified by the user. A few examples of CVDP-LE applications to the CESM2 Large
Ensemble, the Multi-Model Large Ensemble Archive and the CMIP6 archive are linked below;
additional comparisons including netCDF files of CVDP-LE calculations can be found in the
Data Repository.

UCAR Representation of Modes of Variability in US Climate Models
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Key Points

The fidelity of US Climate Models in simulating major
modes of variability and their teleconnections has
generally improved across generations.

Recently produced large ensembles have been a key tool
for quantifying inter-model contrasts and estimating the
intrinsic noise of climate modes.

Pattern correlations against observations of the major modes of variability
by each US Center has generally improved across model generation.

Ensemble-Average Mean Scores

CESM1 (0.82) < CESM2 (0.87)

E3SM1 (0.84) < E3SM2 (0.86)

GISS E2.1 G (0.77) < GISS E2.2 G (0.80)

GFDL CM4 (0.82) = GFDL ESM2M (0.82) < SPEAR (0.87)

(Fasullo et al. 2024 JCLIM)
NCAR

Pattern Correlations
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Connecting model skill of MoV with ETCCDI (extreme indices)

* Goal: to use MoV time series of predict ETCCDI

time series in each Bukovsky region
Bukovsky regions over CON_US

» 17 Bukovsky regions

* MoV and ETCCDI time series are detrended : _________ | ________ =

e Random Forest (RF) regression model

____________

MoV Description Time series Pattern

NAM Northern Annular Mode v v Appalachia Middle Atlantic Prairie

NAO North Affantic Oscillation Y Y Central Plains North Atlantic Southeast
PNA Pacific North American teleconnection pattern v v Deep South North Plains Southwest
SAM Southern Annular Mode v v

so Southern Oscillation v v Great Basin North Rockies South Plains
NPO North Pacific Oscillation x v Great Lakes Pacific Northwest South Rockies
PSA1 Pacific South American teleconnection pattern 1 X v Mezquital Pacific Southwest East Boreal
PSA2 Pacific South American teleconnection pattern 2 X v
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Sources of predictability at different timescales

.

s \ e

Some sources of predictability

Prediction Ranges

extratropical oceans

ENSO

soil moisture

troposphere

m

day week month season year decade century
Weather
—
Subseasonal
—
Seasonal
Annual to R
decadal ' =

natural and anthropogenicforcing

POV AMV/

Climate projection

(Merryfield et al. 2020 BAMS)
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Could soil moisture and
temperature provide predictability
at interannual-to-decadal
timescale through longer memory
land processes and/or their
influence on ocean with longer
memory?
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Hindcasts initialized in 2001 from a simulation where soil moisture/temperature are
assimilated captures the 2003 European summer heatwave

FGOALS E3SMv2

(a) Surface Temperature (shaded) & H500 (contour) (a) Surface Temperature (shaded) & H500 (contour)

OBS GTRL ) HGAST @ 0OBS CTRL HCAST

26 -16 -06 04 -0.3 0 03 04 06 16 28 -26 -16 06 -04 -03 0 03 04 06 16 26
(c) Net Radiation Flux (shaded) (¢) Net Radiation Flux (shaded)

(Shi et al. in review)
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Summary

* A robust model calibration strategy including use of Al/ML can reduce model
biases in the mean states and MoV, though addressing model structural issues is
critically important

* A short simulation strategy for model calibration makes it feasible to calibrate
model parameters for global convection permitting models

* Leveraging and developing model diagnostics and metrics is important to
characterize model biases as targets for improvements

* Soil moisture/temperature could provide an important source of predictability at
S2S timescales for improving predictions
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Integrating new atmospheric model features developed
during phase 2

New cloud and convection features: | | | |
* Predicted Particle Properties (P3) for stratiform clouds —— To 'Mprove represeptahonsl of ice pa.rtlcle
evolution and inclusion of rimed particles.

* Sophisticated cloud microphysics in Allows aerosols to impact convective

Zhang-MaCFarIane (ZM) deep convection scheme processes (through microphysics)
* Multiscale Coherent Structures Parameterization Represents the effects of organized
(MCSP) mesoscale convective systems

«  ZM mass flux adjustment to large-scale dynamics Incorporates the influence of large-scale

circulation on deep convection
New chemistry and aerosol features:

« UCI chemistry with 32 transported species + SOA, dust, stratospheric aerosols, nitrate aerosols

(Shaocheng Xie et al.)
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V3 dev shows improvements in many aspects

Normalized tropical PRECT spectral power (symmetric component)

IMERG 2001-2019
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Wheeler-Kiladis Diagram

Normalized tropical PRECT spectral power (symmetric component)
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Figure from Jim Benedict
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Lag Correlation: PRECT & U850 Using East Indian PRECT Index
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