Tropical Convective Variability in UFS Simulations

Vijit Maithel, Brandon Wolding, Stefan Tulich, Maria Gehne, Juliana Dias CIRES, CU Boulder and NOAA PSL

> June 6, 2024 NOAA S2S Community Workshop

Email - vijit.maithel@noaa.gov

Tropical convection is an important source of predictability at S2S timescales

Madden Julian Oscillation (MJO) Eq. Rossby Kelvin

From Prof. Angel Adames-Corraliza

Models often struggle in representing these organized modes well

From Dias et al. 2018

Model performance can degrade much rapidly than expected

From Gehne et al. 2022

Convection is tightly coupled with thermodynamics in the tropics

Schematic from Wolding et al. 2022

Research goal

What are the errors in representation of the thermodynamic environment in the model?

What are the errors in precipitation-thermodynamic coupling?How do these errors propagate in the models with lead time?

Data

UFS REPLAY

 Model run continuously being nudged towards ERA5

S2S REFORECASTS

• Set of past model forecasts at S2S timescales

UFS CLIMATE

Long term free running model runs

Errors in the model accumulate over

Η	οι	ırs
---	----	-----

Days/weeks

Years

Data

UFS REPLAY Model run continuously being nudged towards

ERA5

- UFS HR1 coupled prototype at 100km resolution
- Daily means over 10 years at 2.5 degree resolution

UFS CLIMATE

- Long term free running
 model runs
 - UFS v17_p8 with stochastic physics
- Daily means over 10 years at 1 degree resolution

Errors in the model accumulate over

Hours

Days/weeks

Years

Buoyancy as measure of thermodynamic environment

Lower troposphere entraining Plume Buoyancy

$$B_DIB = \int_{1000hPa}^{600hPa} R_d (T_{\nu,p} - T_{\nu,e}) dlnp + Ent.mod$$

- Vertically integrated over 1000hPa 600hPa
- Accounts for lower tropospheric temperature, moisture, and mixing with the environment

Buoyancy – Precipitation coupling in ERA5

Buoyancy – Precipitation coupling in UFS Climate run

Buoyancy – Precipitation coupling in UFS Climate run

Buoyancy – Precipitation coupling in UFS Climate run

Model prefers to stay in a more stable mean state

Shallow convection in UFS Climate

Replay simulations – thermodynamic errors are constrained

Temperature, moisture, horizontal winds are nudged towards ERA5.

Fast developing errors in the model expected to be prominent

Output includes

- Model forecast "Replay_fx" free running 3 hr forecast
- Model Increment "Inc" or IAU Difference between ERA5 and model forecast
- Model Analysis "Replay" forced forecast with the increment forcing applied

Schematic from Dias et al. 2021

Buoyancy – Precipitation coupling in UFS Replay

Shows similar features as the UFS climate runs indicating their rapid development in the model

2D Buoyancy-Precipitation phase space

Precipitation biases in UFS replay

Replay runs also show increased stability

Moisture increments show tendency of the model to go to a preferred more stable state

Lower troposphere moisture increment

Model stays too dry below freezing level and too moist above it

Upper troposphere moisture increment

Conclusions

- Possible precipitation drizzle bias in UFS for low rain rates. High rain rates underestimated.
- UFS model prefers a more stable state in the long climate run. Model starts drifting towards stability almost immediately in the short run too.
- Model seems very efficient at removing low tropospheric moisture which increases the stability.
- Potential hypothesis

Email - vijit.maithel@noaa.gov