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Objectives 

Part 1. Use ML to predict errors in subseasonal 
North American geopotential height forecasts 
in GEFS hindcasts

Part 2. Demonstrate that several prototypes of 
the UFS produce common subseasonal 
prediction errors over the tropical east Pacific 
and Atlantic, affecting the conditions that 
modulate tropical cyclones in these basins

Part 3. Neural network (NN) model utilizing 
ENSO and MJO indices and other local 
environmental information used to predict east 
Pacific and Atlantic cyclogenesis
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Part 1: Predicting Forecasts Errors in GEFS (“Errors of Opportunity”)

‣ Global Ensemble Forecast System 
(GEFSv12)

‣ The reforecasts, comprising a total 
of 1042 samples, were initiated every 
7 days from 01/05/2000 to 
12/18/2019

‣ Integrated out to 35 days. Our study 
focuses on lead times of 10-14 
days
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Using Neural Networks to Predict Errors in the Unified Forecast System (UFS) on S2S Timescales

Cahill, Barnes, Maloney, Harr, 
Madaus, Sain (2024), WAF
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Associated with MJO Phase 4
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Part 2: Subseasonal TC Genesis Prediction  

 

Henderson and Maloney (2013)

TC Genesis vs. MJO Phase
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(UFS S2S PROTOTYPES 5-8) 

Re-forecast period Forecast lead Frequency of initialization
April 2011 to March 2018 (7 

years)
6 hourly output, out to 35 days 1st and 15th of each month

❖ The re-analysis dataset, ERA5, is utilized to compare with the UFS model.

❖ The All-season Real-time Multivariate (RMM) MJO Index (Wheeler-Hendon) is obtained from the The 
Centre for Australian Weather and Climate Research.
Data Source: http://www.bom.gov.au/climate/mjo/

❖ The TC information is obtained from the International Best Track Archive for Climate Stewardship 
(IBTrACS) dataset.
Data Source: https://www.ncei.noaa.gov/products/international-best-track-archive

Yu-Cian Tsai

http://www.bom.gov.au/climate/mjo/
http://cawcr.gov.au/
http://cawcr.gov.au/
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22 cases

20 cases

MJO Phase 8, 1 (avg): 

Composite 850 hPa Velocity Potential

MJO Phase 4, 6 (avg): 

Composite 850 hPa Velocity Potential 

Model MJO Propagates Too Slowly 
and Creates East Pacific Biases? 

Produces timing and strength errors 
of MJO precipitation in east Pacific 

Boreal Summer MJO Composites
(Ensemble Average)
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East Pacific Genesis Potential Forecasts

 

Using intraseasonal genesis potential index:
Moon et al. (2018) 

Units: TC genesis per day per 10ox10o 
grid
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Moist Static Energy Variance Budget (West Pacific) 

 



Part 3: ENSO and MJO as Predictors Lead to east Pacific TC Cyclogenesis Prediction Skill

1
3

Carlo Frontera, Barnes, 
Maloney (2024), WAF
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Conclusions 

• A NN model accurately identifies underestimates of 
Spring 2-week forecast geopotential heights in the 
Pacific Northwest in MJO phase 4 stemming from the 
UFS’s failure to correctly forecast teleconnection 
patterns. 

• When the UFS is initiated in MJO phases with a strong 
dipole of convection across the Maritime Continent, 
prominent subseasonal UFS forecast errors result in the 
Western Hemisphere that affect cyclogenesis 
predictions due to too slow of MJO propagation 

• UFS Prototype 8 shows a lot more promise.

• NN model utilizing ENSO and MJO indices and other 
local environmental information are also used to 
predict east Pacific and Atlantic cyclogenesis, and 
demonstrate enhanced forecasting skill relative to 
climatology 
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More Details  

Cahill, Jack, Elizabeth A Barnes; Eric D Maloney; Stephan R Sain; Patrick Harr; Luke Madaus, 2024: Errors of 
Opportunity: Using Neural Networks to Predict Errors in the Unified Forecast System (UFS) on S2S 
Timescales,  Weather and Forecasting, submitted.

Tsai, Y.-C., E. D. Maloney, D. Kim, and S. Camargo, 2024: Unified Forecast System Model Prediction of the 
Madden-Julian Oscillation and East Pacific Teleconnections During Boreal Summer. J. Geophys. Res., in 
preparation. 

Carlo Frontera, Z., E. A. Barnes, and E. D. Maloney, 2024: Data-driven Models for Subseasonal Cyclogenesis 
Forecasts in the East Pacific and North Atlantic. Wea. And Forecasting, submitted.
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Thanks
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Using Neural Networks to Predict Errors in the Unified Forecast System (UFS) on S2S Timescales
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MJO Phase Diagrams and Forecasts 

 



Elizabeth A. BarnesCSU

MJO Phase Diagrams and Forecasts 
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East Pacific Variance Budget 
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Composite Omega Anomalies at the Time of Maximum Convection 
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(a) RMM Index >= 1 (b) RMM Index >= 0.75

(c) RMM Index >= 0.50
❖ First, we generate statistics of the MJO phases at model 

initialization days (day 0) for different RMM index thresholds.  

❖ “X” means that MJO is inactive (RMM index < threshold) at those 
initialization days. 

❖ To obtain a large enough sample size of MJO cases starting at 
different phases, we decided to set the threshold of RMM index to 
0.5. 

Boreal Summer Only
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e.g. After Phases 1 and 8, UFS wants 
to too strongly suppress east Pacific 
precipitation and produces easterly 
low-level anomalies

Would unrealistically suppress east 
Pacific cyclogenesis. 
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AI Architecture

‣ input layer consists of OLR across the tropics resulting in a total of 48,581 vectorized and normalized grid points/input nodes. 
To account for the large number of input nodes we apply a “dropout layer” following the input layer

‣ one hidden layer of 60 nodes

‣ rectified linear unit is used as the activation function. Subsequently, the output layer is composed of three nodes, representing 
the three classes of error: UFS underestimates, UFS precise estimates, and UFS overestimates.

‣ a softmax activation function is applied to the output layer which remaps the values of the three-node output such that they 
sum to one. 

‣ The largest value of the three nodes is then defined as the network’s predicted class. 

‣ Additionally, we associate the value of the winning class with its predicted value, which we call “model confidence”. This “model 
confidence” quantifies the neural network's certainty in its classification decision for each sample. A higher value, closer to 1, 
indicates a stronger confidence in the network's prediction, suggesting that the model perceives clear, definitive features in the 
data that align with the predicted class. 

‣ Conversely, a lower confidence value, like 0.6, implies uncertainty and less distinct features in the data for that winning class. 
The batch size is set to 32 and the neural network is run for 100 epochs with a learning rate of 0.0001.
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AI Architecture

• The network is trained on 16 years of data (834 or 833 samples depending on the presence of leap years) and the remaining 4 
years of data (208 or 209 samples) are used as testing data. 

• In an attempt to ameliorate potential issues of a small testing set, a five-fold cross-validation technique is employed. This 
approach incorporates each consecutive testing fold, resulting in 1042 testing samples for analysis. 

• To ensure robustness, the neural network is run for six different random initialization seeds of starting weights for each 
training-testing fold. Unless otherwise stated, our analysis shown here is performed solely on the testing data averaged across 
all cross-validation folds and seeds. This average is computed after all folds and seeds are run. 

• This setup is applied to all 156 grid points across the North Pacific and continental United States such that each location is 
trained using 30 different networks.
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AI Performance 

 


