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Motivation

• As long as model physics and numerics remain 

imperfect, prediction models initialized close to 

observations will drift toward biased states       → 

• A pragmatic alternative: estimate “missing” physical  

tendencies from assimilation increments

Saurral et al. JAMES 2021
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The basic idea

• Consider atmospheric (or other) model component 

constrained by 

o nudging to gridded reanalysis time series, or

o data assimilation

• Save time series of the nudging terms (or assimilation 

increments), compute mean annual cycle:

• Insert as a tendency correction in forecast runs:
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The basic idea
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constrained by 

o nudging to gridded reanalysis time series, or
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• Save time series of the nudging terms (or assimilation 
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→ Improved skill



Related methods

NASA GEOS

• Estimate tendency corrections from atmospheric 

assimilation increments 

• Apply long-term averaged increments (retaining 

diurnal and annual cycles) as forcing terms to 

atmospheric u, v, T, and ps

• Atmospheric/surface biases reduced

• “Modest at best” improvements in S2S skill

GFDL SPEAR

• Estimate tendency adjustments from ocean T/S 

assimilation increments during 2007-2018

• Apply OTA from annual cycle of increments

• SST and subsurface biases greatly reduced

• Improved ENSO skill after first months



CanESM5 seasonal forecast initialization 
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Tendency adjustment methodology for CanESM5

• Evaluate CanESM5 free runs and hindcasts using

➢ no bias correction  

➢ default bias correction settings 

➢ optimized atm bias correction settings 

• Atmosphere

➢ default settings: A=24h, apply on scales >1000km

➢ optimized settings: A(z), spectral truncation per variable 
~

• Ocean

➢ O=30 days for T/S in upper 800m, 360 days below

➢ no nudging within 2 of Equator



CanESM5 AMIP 
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CanESM5 free 

coupled runs 

1981-2020 
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CanESM5 

hindcasts 
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SSTA standard deviations 1991-2020 
Obs (OISST) 

C

opt BC (lead 6 months)

• ENSO in hindcasts is weaker than observed

• Bias correction doesn’t help

• However, bias correction reduces the unrealistic 

westward extension of El Niño/La Niña SST 

anomalies (a common error in climate models)

• This impacts skill in the affected region, and 

possibly teleconnected regions as well

no BC (lead 6 months)



DJF anomaly correlation from June (lead 6 months)
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DJF anomaly correlation from June (lead 6 months)
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Anomaly correlation vs lead time (all initial months)
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Summary

• Simple tendency adjustment/bias correction derived from nudging terms has been applied in 

atmosphere and ocean components of CanESM5

• Atmosphere and ocean state biases are substantially reduced, both in free runs and hindcasts

• Temperature and precipitation hindcast skill improved globally

• Skill improvements partly attributable to improved ENSO SSTA pattern                          

(CanESM5 Nino3.4 skill mediocre, not improved by BC)

• CanESM5 opt BC begins contributing to NMME July 1,                                                             

along with GEM5.2-NEMO CanESM5 GEM5.2-

NEMO



Outlook

• Tendency adjustments thus far in ECCC/GFDL/NASA models have been state-independent

• Current research on multiple fronts is exploring state-dependent tendency adjustment facilitated 

by machine learning
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