

Xue, Y, A. Bonne, T. Yao, I. Diallo, X. Zeng,, F. Vitart, D. Neelin, W. K.-M. Lau, LS4P Team.

S2S Community Workshop: Toward Minimizing Early Model Biases and Errors in S2S Predictions June 5-7, 2024 | Boulder, CO

# Impact of Initialized Land Temperature and Snowpack on Sub-Seasonal to Seasonal Prediction (LS4P)

Co-Chairs: Yongkang Xue, Aaron Boones, Tandong Yao

## **GEWEX/LS4P Project Goals:**

- □ What is the impact of the initialization of large-scale land surface temperature/subsurface temperature (LST/SUBT) in high mountains in climate models on the S2S prediction over different regions?
- □ What is the relative role and uncertainties in these land processes versus in SST in S2S prediction?
- Phase I: Tibetan Plateau LST/SUBT Effect is the focus; June 2003 is the first case.
- Phase II: Rocky Mountain LST/SUBT Effect is the focus; June-Aug. 1998 is the first case

  Xue et al., (2021, GMD)











































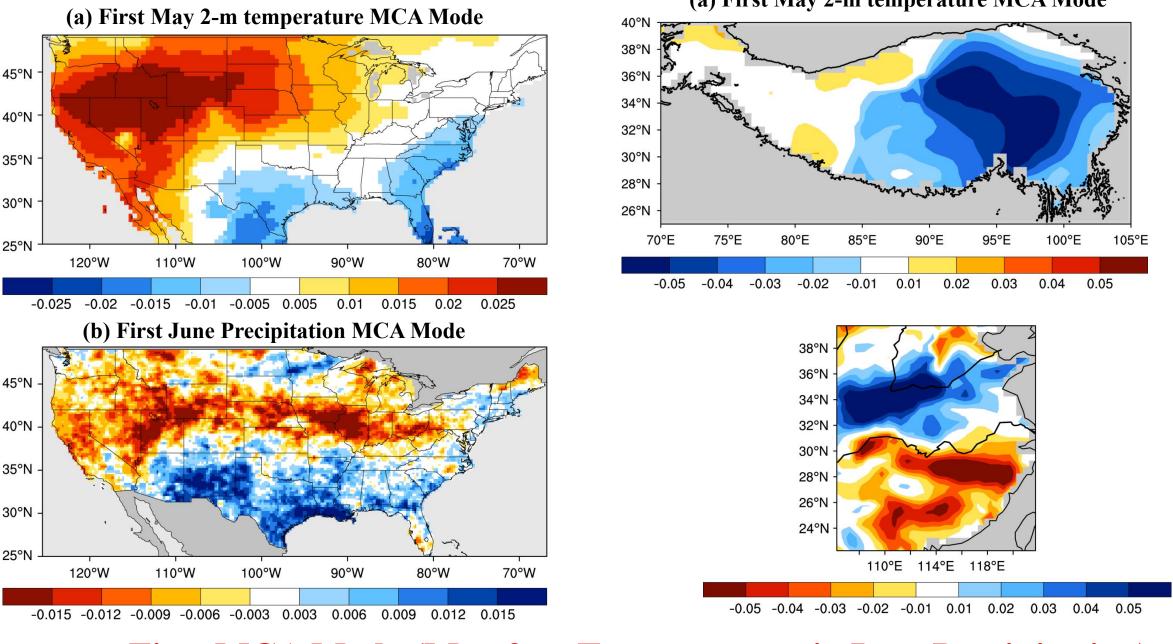


Five workshops (1998, 1999, 2022, 2023 AGU, 1999 Nanjing University)

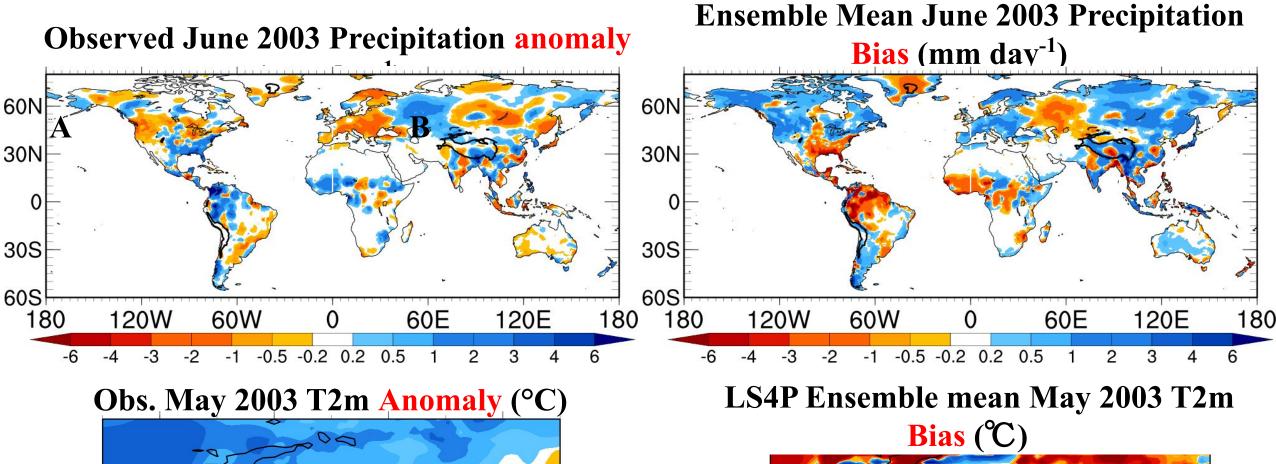


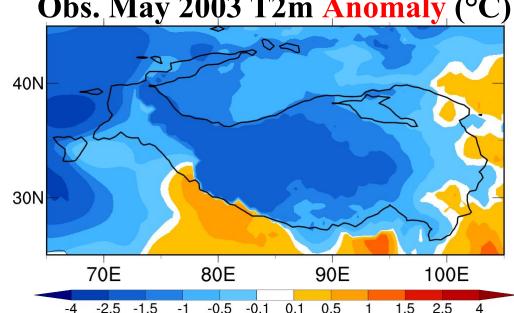


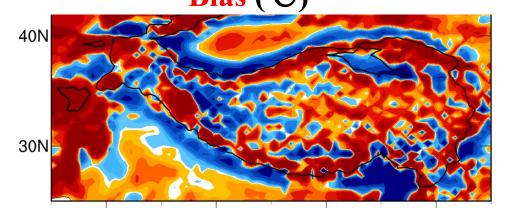








WECS, Nepal


LS4P Website: http://ls4p.geog.ucla.edu



First MCA Mode (May 2-m Temperature vis June Precipitation)
MCA: Maximum Covariance Analysis (Xue et al., 2018)







-0.5 -0.1 0.1 0.5

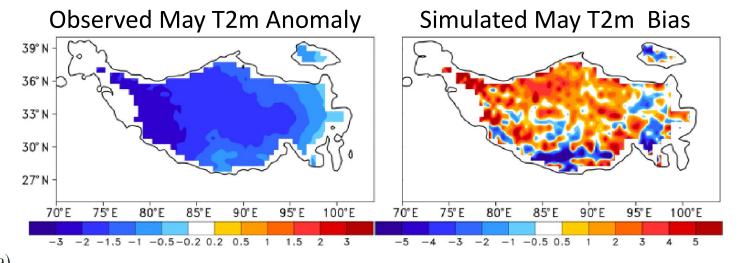
90E

100E

1.5 2.5

80E

70E

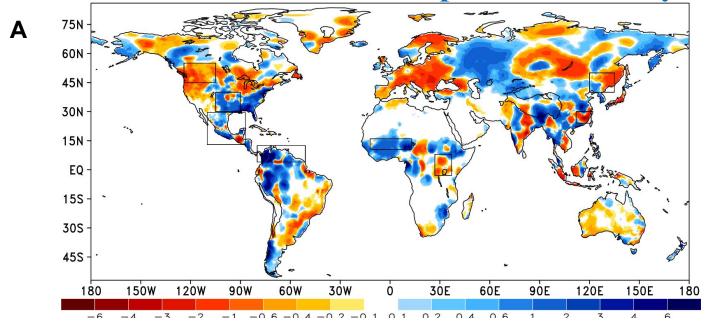

#### **Development of Initialization Methodology**

#### Principles Consideration: (1) Model bias; (2) Observed Anomalies; (3) Tuning parameter

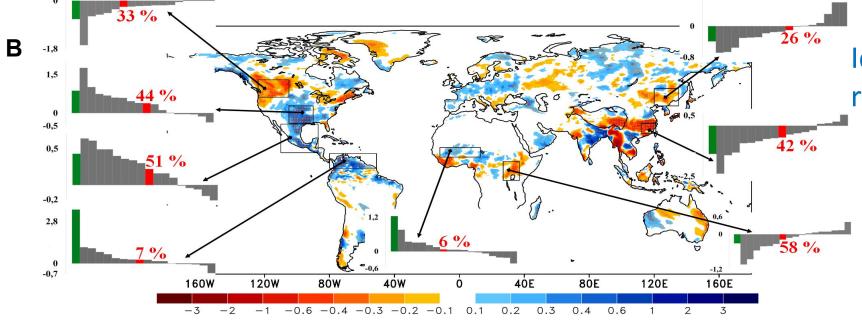
Applying the mask,  $T_0(i, j)$ , will be defined as follows:

$$\begin{split} \tilde{T}_{0}\left(i,j\right) &= T_{0}\left(i,j\right) + \Delta T_{\text{mask}}\left(i,j\right) = T_{0}\left(i,j\right) \\ &+ \left[-n \times T_{\text{obs anomaly}}\left(i,j\right) - T_{\text{bias}}\left(i,j\right)\right], \\ \text{when } \tilde{T}_{\text{obs anomaly}} \times \tilde{T}_{\text{bias}} &\geq 0, \end{split} \tag{1a}$$

Xue et al. (2021, GMD)




**Simulated May T-2m difference after** 

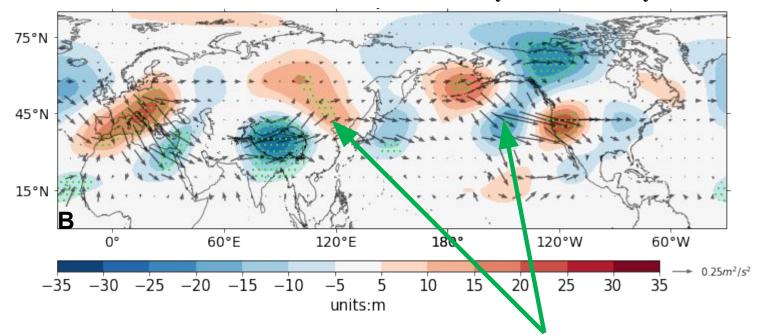

#### Imposed Mask at 1<sup>st</sup> time step

## imposing mask for initial condition 75° N 50° N 25° N 25° S 50° S 100°E

#### **Observed June 2003 Precipitation Anomaly**



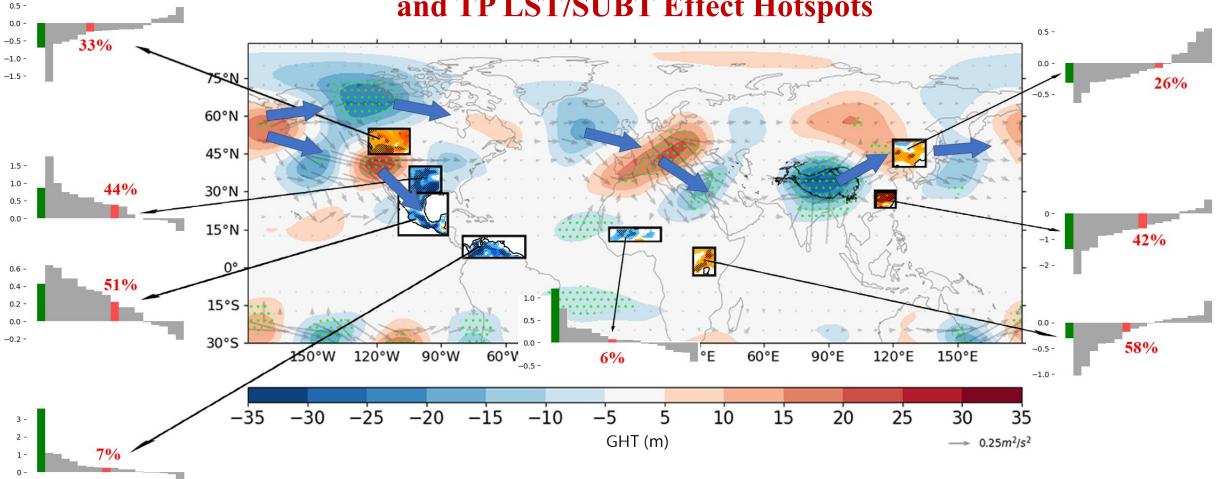
### Simulated TP LST/SUBT effect on June 2003 Precipitation




Identify 8 hotspot regions

#### **Observed May TPI and RMI time series from 1981-2015**

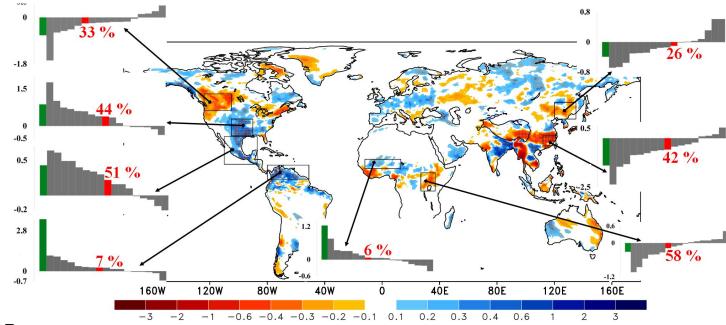



#### **Observed Wave Train due to TP May T2m anomaly**

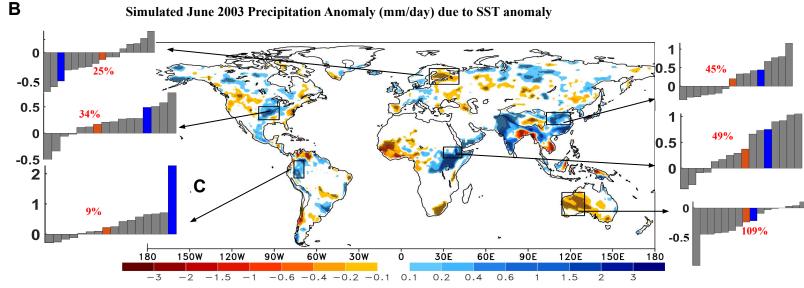


**Tibetan-Rocky Mountain Wave train** 

. Linkage between the TP and North America. (A) TPI and RMI time series. (b) Wave train. Notes: Fig. 4B is the regression of May 200-hPa geopotential height (m) of NCEP Reanalysis I from 1981-2015 onto (-1) \* normalized May TPI and corresponding wave activity flux (WAF; m2/s2). Shadings denote the geopotential height, vectors denote the WAF.


# Tibetan Plateau – Rocky Mountain Circumglobal Wave Train (TRC) and TP LST/SUBT Effect Hotspots




The schematic demonstrates the TRC global influence and possible hotspots. The color shadings within the boxes are snapshots of the LS4P multi-model--simulated June 2003 precipitation anomalies due to the effect of cold Tibetan Plateau land surface and subsurface temperature (LST/SUBT), and elsewhere the shaded areas show the observed 200-hPa geopotential height (GHT) anomalies due to the cold Tibetan Plateau temperature. The green bar corresponds to the observations and the red bar is the ensemble mean in each hot spot. Green dots represent a statistical significance at p<0.1. The light vectors are wave activity flux, and the heavy blue arrows indicate the TRC propagation. The figure is based on Xue et al. (BAMS, 2022, Climate Dynamics 2023).

#### Comparison of June 2003 Precipitation Anomaly due to LST/SUBT and SST Effect(mm/day)









#### LS4P Phase II

## Major Objevtives:

- (1). Case study for 1998: Warm Tibetan Plateau and Cold Rocky Mountains in Spring and June flood in Yangtze River and drought in Southern Great Plains.
  - (2). RCM Protocol

LS4P Phase III (~2027)

One of the southern hemisphere mountain effect

# **EVMWF-IFS Sensitivity Statistics (Preliminary)**

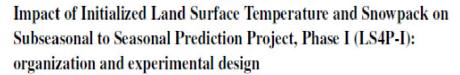
|                            | May 1998 2m Temperature (°C) | June 1998 Precip<br>mm/day |  |
|----------------------------|------------------------------|----------------------------|--|
| Obs. Anomaly               | Tibetan Plateau<br>1.404     | S. Yangtze Basin<br>5.668  |  |
| Bias in CONTROL            | -3.314                       | -5.281                     |  |
| Sensitivity<br>Experiments | Experiment minus CONTROL     |                            |  |
| TP △t n=1                  | 0.618                        | 0.672                      |  |
| TP ∆t n=3                  | 0.717                        | 1.759                      |  |



# Observed and Simulated Jun 1998 precipitation anomaly (mm/day) Over Yangtze River Basin and South Great Plains

|                                           | Obs<br>anomaly | RM Cold<br>LST/SUBT effect | TP Warm<br>LST/SUBT effect | SST effect |
|-------------------------------------------|----------------|----------------------------|----------------------------|------------|
| Yangtze River Basin<br>(26-31N;104-120 E) | 3.26           | 1.11                       | 1.44                       | 1.04       |
| South Great Plains<br>(27-37N;107W-80W)   | -1.45          | -0.71                      | -0.61                      | -0.11      |

Note: The 1998 was a very strong El Niño Year. The SST has very strong impact in the tropical regions, such as Sahel, Central Africa, Amazon, and Central America at S2S scale (not listed in the table).


#### **Publications**

Geosci. Model Dev., 14, 4465–4494, 2021 https://doi.org/10.5194/gmd-14-4465-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.





2021



Yongkang Xue<sup>1</sup>, Tandong Yao<sup>2</sup>, Aaron A. Boone<sup>3</sup>, Ismaila Diallo<sup>1</sup>, Ye Liu<sup>1</sup>, Xubin Zeng<sup>4</sup>, William K. M. Lau<sup>5</sup>, Shiori Sugimoto<sup>6</sup>, Qi Tang<sup>7</sup>, Xiaoduo Pan<sup>2</sup>, Peter J. van Oevelen<sup>8</sup>, Daniel Klocke<sup>9</sup>, Myung-Seo Koo<sup>10</sup>, Tomonori Sato<sup>11</sup>, Zhaohui Lin<sup>12</sup>, Yuhei Takaya<sup>13</sup>, Constantin Ardilouze<sup>3</sup>, Stefano Materia<sup>14</sup>, Subodh K. Saha<sup>15</sup>, Retish Senan<sup>16</sup>, Tetsu Nakamura<sup>11</sup>, Hailan Wang<sup>17</sup>, Jing Yang<sup>18</sup>, Hongliang Zhang<sup>19</sup>, Mei Zhao<sup>20</sup>, Xin-Zhong Liang<sup>5</sup>, J. David Neelin<sup>1</sup>, Frederic Vitart<sup>16</sup>, Xin Li<sup>2</sup>, Ping Zhao<sup>21</sup>, Chunxiang Shi<sup>22</sup>, Weidong Guo<sup>23</sup>, Jianping Tang<sup>23</sup>, Miao Yu<sup>24</sup>, Yun Qian<sup>25</sup>, Samuel S. P. Shen<sup>26</sup>, Yang Zhang<sup>23</sup>, Kun Yang<sup>27</sup>, Ruby Leung<sup>25</sup>, Yuan Qiu<sup>12</sup>, Danieke Peano<sup>14</sup>, Xin Qi<sup>18</sup>, Yanling Zhan<sup>12</sup>, Michael A. Brunke<sup>4</sup>, Sin Chan Chou<sup>28</sup>, Michael Ek<sup>29</sup>, Tianyi Fan <sup>18,10</sup>, Hong Guan<sup>30</sup>, Hai Lin<sup>31</sup>, Shunlin Liang<sup>32</sup>, Helin Wei<sup>17</sup>, Shaocheng Xie<sup>7</sup>, Haoran Xu<sup>5</sup>, Weiping Li<sup>33</sup>, Xueli Shi<sup>33</sup>, Paulo Nobre<sup>28</sup>, Yan Pan<sup>23</sup>, Yi Qin<sup>27,7</sup>, Jeff Dozier<sup>34</sup>, Craig R. Ferguson<sup>35</sup>, Gianpaolo Balsamo<sup>16</sup>, Qing Bao<sup>36</sup>, Jinming Feng<sup>12</sup>, Jinkyu Hong<sup>37</sup>, Songyou Hong<sup>10</sup>, Huilin Huang<sup>1</sup>, Duoying Ji<sup>18</sup>, Zhenming Ji<sup>38</sup>, Shichang Kang<sup>39,40</sup>, Yanluan Lin<sup>27</sup>, Weipuane Lin<sup>41,24</sup>, Ryan Muncaster<sup>31</sup>, Patricia de Rosnay<sup>16</sup>, Hiroshi G. Takahashi<sup>42</sup>, Guiline Wana<sup>41</sup>.



# Spring Land Temperature in Tibetan Plateau and Global-Scale Summer Precipitation

2022

#### Initialization and Improved Prediction

Yongkang Xue, Ismaila Diallo, Aaron A. Boone, Tandong Yao, Yang Zhang, Xubin Zeng, J. David Neelin, William K. M. Lau, Yan Pan, Ye Liu, Xiaoduo Pan, Qi Tang, Peter J. van Oevelen, Tomonori Sato, Myung-Seo Koo, Stefano Materia, Chunxiang Shi, Jing Yang, Constantin Ardilouze, Zhaohui Lin, Xin Qi, Tetsu Nakamura, Subodh K. Saha, Retish Senan, Yuhei Takaya, Hailan Wang, Hongliang Zhang, Mei Zhao, Hara Prasad Nayak, Qiuyu Chen, Jinming Feng, Michael A. Brunke, Tianyi Fan, Songyou Hong, Paulo Nobre, Daniele Peano, Yi Qin, Frederic Vitart, Shaocheng Xie, Yanling Zhan, Daniel Klocke, Ruby Leung, Xin Li, Michael Ek, Weidong Guo, Gianpaolo Balsamo, Qing Bao, Sin Chan Chou, Patricia de Rosnay, Yanluan Lin, Yuejian Zhu, Yun Qian, Ping Zhao, Jianping Tang, Xin-Zhong Liang, Jinkyu Hong, Duoying Ji, Zhenming Ji, Yuan Qiu,



Volume 62 - Number 4 - April 2024

Special Issue: Subseasonal-to-Seasonal predictability of extreme precipitation and land forcing

Guest Editors: Yongkang Xue - William K-M Lau

#### **EDITORIAL**

Sub-seasonal-to-seasonal predictability of extreme precipitation and land forcing
Y. Xue • W.K.-M. Lau 2500

Remote effects of Tibetan Plateau spring land temperature

#### ORIGINAL ARTICLES

P. Zhao 2603

on global subseasonal to seasonal precipitation prediction and comparison with effects of sea surface temperature: the GEWEX/LS4P Phase I experiment
Y. Xue · I. Diallo · A.A. Boone · Y. Zhang · X. Zeng · W.K.M. Lau · J.D. Neelin · T. Yao · Q. Tang · T. Sato · M.-S. Koo · F. Vitart · C. Ardilouze · S.K. Saha · S. Materia · Z. Lin · Y. Takaya · J. Yang · T. Nakamura · X. Qi · Y. Qin · P. Nobre · R. Senan · H. Wang · H. Zhang · M. Zhao · H.P. Nayak · Y. Pan · X. Pan · J. Feng · C. Shi · S. Xie · M.A. Brunke · Q. Bao · M.J. Bottino · T. Fan · S. Hong · Y. Lin · D. Peano · Y. Zhan · C.R. Mechoso · X. Ren · G. Balsamo ·

Impact of initializing the soil with a thermally and hydrologically balanced state on subseasonal predictability C. Ardilouze - A.A. Boone 2629

M. Ek · X. Li · W. Guo · Y. Zhu · J. Tang · X.-Z. Liang · Y. Qian ·

S.C. Chou · P. de Rosnay · P.J. van Oevelen · D. Klocke ·

Improved subseasonal-to-seasonal precipitation prediction

Volume 62 - Numbe 2024

### **Summary**

- 1). Observational data show a potential for the LST/SUBT to provide land memory at the S2S time scale, and a lag relationship between May T2m anomaly over the TP/RM and June precipitation anomaly downstream.
- 2). In ESM experiments, by correcting the TP spring LST bias, the S2S predictions over hot spot regions improve. The consideration of the TP LST/SUBT effect has produced about 25%-50% of observed precipitation anomalies in most of 8 hotspot regions. For comparison, 6 regions with significant SST effects were identified in the 2003 case, explaining about 25-50% of precipitation anomalies over most of these regions.
- 3). The TP LST/SUBT influence is underscored by an observed out-of-phase oscillation between the TP and RM surface temperatures and a downstream TP-RM Circumglobal (TRC) wave train linking the TP to North America