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GMAO’s Model Error Correction Methods

1. Green’s Functions objective parameter tuning: Implemented for 
GEOS-S2S-3,  Included in development of next version, used in GMAO 
for wave model development. Results positive, can be improved 
further. Code was placed on github.

2. “Tendency Bias Correction” – a priori error correction – mixed results 
and thoughts for future 



Model
● AGCM:  Recent GMAO NWP (including aerosol model) + two-moment cloud microphysics
● OGCM: MOM5, ~0.25 deg, 50 levels,; Ice Sheet runoff to proper location
● New “atmosphere-ocean interface layer” - diurnal warming and cool layer
● Sea Ice: CICE-4.0
● Forecasts: initialized from “GiOcean-NRT” assimilation, new perturbation/ensemble strategy;
● Retrospective Forecasts: initialized from “GiOcean” reanalysis, new perturbation/ensemble strategy;

Coupled Ocean Data Assimilation System – Coupled Reanalysis “GiOcean” and “GiOcean-NRT”
● Atmosphere is “replayed” to  “GEOS_IT”; precipitation correction over land, modified to “regular replay” 
● Aerosol is “replayed” to GEOS_IT analyzed aerosol optical depth using GAAS (Goddard Aerosol 
Assimilation System)
● Penny et al. (2013) LETKF code/system, set here using (updated) static background error statistics;

Observations
● nudging of SST and sea ice fraction from GEOS-IT boundary conditions, new technique for sea ice;
● assimilation of in situ Tz and Sz including Argo, XBT, CTD, tropical moorings;
● assimilation of satellite along-track ADT (Jason, Saral, ERS, GEOSAT, HY-2A, CryoSat-2);
● sea ice concentration from the National Snow and Ice Data Center (NSIDC).
● assimilation of SMOS, SMAP, Aquarius sea surface salinity

GEOS-S2S-3 Coupled Model and DA: Overview 
of System Characteristics



1. GEOS-S2S-3 AOGCM: Model Tuning using the 
Green’s Functions Method

Recipe:
1. Define a set of parameters to perturb.
2. Run a set of AOGCM experiments, perturbing one parameter at a time.
3. Define a set of observational targets and choose a “cost function”.
4. Use the Green’s functions methodology to choose the set of parameters that 

minimizes the cost. The computational cost of the minimization is negligible.
5. Assuming linearity, compute the projected cost reduction.
6. Run a new forward “optimized” experiment with optimized parameters and 

assess the optimized cost reduction.

Note: steps 3-6 can be repeated with different observational targets and cost 
functions without the need for additional GCM experiments.



Verification data “targets”:

GEOS-S2S-3 AOGCM: Green’s Functions Cost and Verification

 

Variable Dataset Years
Ice fraction MERRA-2 1996-2004
Net surface short-wave radiation SRB 1997-2004
Downward long-wave radiation SRB 1997-2004
Near surface temperature HadCRUT4 1996-2004
Sea surface temperature ECCO 1996-2004
Sea surface salinity ECCO 1996-2004
THETA at 300m ECCO 1996-2004
SALT at 300m ECCO 1996-2004

From: Strobach et al., 2022 GMD



Optimized parameters

# Parameter Initial 
value

Perturbed 
value

Optimized 
value

1 DCRIT_DRIZZLE 0.2 0.3 0.21

2 LTS_LOW 19 20 19.4

3 CICE_AH_MAX 0.3 0.2 0.35

4 ALBICEV 0.73 0.82 0.77

5 ALBICEI 0.33 0.4 0.37

6 TURNRHCRIT 884 750 904

7 CQFACTOR 1 1.5 1.23

8 Charnok1 2.92E-3 2.19E-3 3.36E-3

9 Charnok2 -1.1E-8 -2.0E-8 -1.22E-8

10 XPFAC 1 1.2 1.05

# Parameter Initial 
value

Perturbed 
value

Optimized 
value

11 SCLMFDFR 1 0.8 1.05

12 MINRHCRIT 0.9 0.85 0.91

13 MIN_EXP 0.6 0.8 0.69

14 MAX_EXP 1.5 1.7 1.44

15 TS_AUTO_ICE 4 3 4.49

16 BC_INFAC 1 0.5 0.74

17 DUST_INFAC 1 0.5 0.83

18 DCS 3.5E-4 3.0E-4 3.72E-4

19 UISCALE 1 0.9 0.97

20 KHRADFAC 0.85 0.5 0.92

In many cases the optimized parameters are outside the range of the default and perturbed values
From: Strobach et al., 2022 GMD



GEOS-S2S-3 AOGCM: Green’s Functions Total Cost

From: Strobach et al., 2022 GMD

Cost was also assessed for 
each observational target 
individually. For this example 
all cost was reduced except 
for surface skin temperature 
over sea ice.

Ocean observational targets 
all showed reduced cost 
despite not including ocean 
model parameters in the 
optimization.



Cost by variable

From: Strobach et al., 2022 GMD



GEOS-S2S-3: Forecast Evaluation – Impact of Green’s 
Functions Tuning

June 1-month lead AC

GEOS-S2S-2 GEOS-S2S-3

Analysis of Zhao Li

Results of Green’s Functions Tuning:
• Improved long term bias (observational targets and other fields in time slice experiments
• Error “saturation” in shorter time (was 6 months for T2M, now 3 months)
• Improvement in boreal summer and winter skill at short lead times (<3 months) 



Green’s Functions Tuning - Recap and 
Future Directions

� Use of GF method has so far used a simple cost function. As reported in Strobach et al., 2022 this 
has necessitated removing observational targets that “absorb all the error” at the expense of 
other targets. Use of alternative cost functions will be explored

� Use of GF method’s observational targets will be expanded to include derived quantities such as 
Hadley cell mass streamfunction, Velocity Potential and Niño 3.4



2. Tendency Bias Correction (TBC)

3z 6z 9z 12z 15z

forecast

Add increments to model for 6hr

Perform analysis:  
increment = analysis - forecast

forecast

Add increments to model for 6hr

Perform analysis:  
increment = analysis - forecast

IAU, “Replay” and TBC at GMAO: Flow Diagram

IAU of Bloom et al., 1996, depicted here

“Replay” described in Orbe et al., 2017

Updated IAU described in Takacs et al., 2018
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Underlying Motivation/Questions

• Can we reduce the model’s climate 
bias by correcting the initial drift or 
tendency bias?

• Does reduced climate bias manifest 
itself in increased forecast skill at 
subseasonal to seasonal lead times?

“Drift” refers to time mean differences between the model forecasts and observations (or 
reanalysis) that are functions of lead time. 

The “tendency bias” and the model’s climatological bias represent the two end points of the bias 
evolution or drift, with the former measuring how the model initially starts to drift away from the 
observed climate and the latter measuring where it ends up. 



Atmospheric Correction in Atmospheric Model

Experiment:
Long “AMIP” simulation (~37 years using an atmospheric model 
forced with observed sea surface temperatures) with MERRA-2 
AGCM and MERRA-2 analysis increments used to compute TBC 
terms

Results:
Time mean climate root mean squared error is reduced. Also 
improved interannual variability and seasonality.

Little impact on systematic error in other (diagnostic) fields such 
as cloud cover and precipitation.

Little impact on forecast skill

(Similar experiments and outcome shown in Kharin and Scinocca, 2012) Chang et al., 2019 



Atmospheric Correction in Coupled Model

Experiment 

Long coupled simulation in which atmosphere is “replay”ed to MERRA-2. 
TBC terms are interannual averages of replay increments at each 6-hour 
interval. Since the experiment is only correcting atmospheric quantities, 
the ocean is only indirectly constrained by the TBC.

Results

Various improvements to the climate bias of the mean state, stationary 
waves and related transients, and more realistic ENSO variability and 
associated teleconnections

TBC-related skill improvements were rather modest at best at both 
subseasonal and seasonal time scales. The modest improvements were 
at subseasonal scales, for eddy heights over the Pacific–North American 
region and T2m over North America.

Chang et al., 2019 



“Regional TBC” – Find Source of model error

TBC corrections were applied together 
and separately in the regions shown here. 

Experiments were performed with the 
GEOS AGCM forced with observed SST 
and run for the period 1980-2017.  A TBC 
experiment was also conducted in which 
the increments were applied globally. In 
addition, a CNTRL run was made without 
any correction terms. 

The Regions Over Which Corrections were Applied 
Regional TBC and Replay: A Tool 
for Addressing Model Error

Schubert et al., 2019 



Regional TBC – Source of model error (cont’d)

JJA 250mb U-wind: TBC Upper left panel is (CNTRL-MERRA-2).  The 
other panels are the  experiments 
(TBC-CNTRL) for the regions shown by the 
red boxes.  The upper right map is the 
sum of the results of the 6 NM regions.  
The bar graphs are the normalized spatial 
inner products from the various 
experiments. 

Key results: much (87%) of the AGCM 
long term bias in the NM region can be 
corrected by the TBC in that region, and 
much of that (>40%) is achieved by the 
correction over the Tibet region (NM

2
).  

Results are similar for T2M and 
precipitation in JJA

Schubert et al., 2019 



Why is there little or no impact on forecast skill after demonstrating that TBC can significantly 
reduce climate bias?

The connection between forecast skill and the quality of a model’s climate (including variability) is 
not straightforward, though it seems plausible that a model with a better long-term climate should 
have better forecast skill. However…. Some possible obstacles are:

� The “true” errors cannot be represented by a simple constant forcing term and are, in fact, state 
dependent (e.g., Leith 1978; Danforth et al. 2007)

� Correcting climate drift (which is a function of forecast lead time) can presumably only lead to 
improved forecast skill if a substantial amount of the bias (and its correction) occurs before all 
predictability is lost. The two time scales (associated with drift development and predictability) 
serve to define a window of forecast leads during which TBC can be expected to have an impact 
on skill. 

TBC – What Works and What Does Not  



TBC Results – Motivation for Future Directions

Q: Can we reduce the model’s climate bias by correcting the initial drift or tendency bias?
A: Yes, this has been shown for atmosphere (Chang et al., 2019, Kharin and Scinocca, 2012), ocean 
(Lu et al., 2022) and coupled models (Chang et al 2019, Merryfield et al., 2022) and assimilation 
systems (Lu et al., 2020)

Q: Does reduced climate bias manifest itself in increased forecast skill at subseasonal to seasonal 
lead times?
A: Marginal increased skill at best, some potential promise for coupled TBC

Future Directions with TBC in GMAO
1. Use atmospheric replay increments and ocean IAU increments, both derived by ML to include 

model state dependance, to estimate TBC terms. 
2. Use in weakly coupled assimilation with goal of improving Mean Analysis Error 
3. Use in forecasts initialized from coupled assimilation to evaluate impact on skill


