Tackling Model Biases in GFDL Climate and Forecast Models

ž

퀭

औ

RS

咒

 \mathbb{A}

12

÷.

X

r

Baoqiang (Bao) Xiang

NOAA/GFDL, UCAR

With contributions from Vaishali Naik, David Paynter, Ming Zhao, Sergey Malyshev, Huan Guo, Pu Lin, Zhihong Tan, Leo, Donner, Bosong Zhang, Feiyu Lu, Linjiong Zhou

S2S Community Workshop: Toward Minimizing Early Model Biases Session: Lessons learned: Reduction of Model Biases June 5, 2024

Two GFDL Forecast Systems

- 1. SHiELD (from weather):
 - --- Forecast-oriented physics development

2. SPEAR (from climate): AM4/LM4+MOM6/SIS2

--- Process-level development with emphasis on model physics and mean climates

Assumption:

A realistic representation of mean climate and variabilities is essential for S2S prediction

Overall AM5 Development Plans

Code Incorporated Likely Possibly

Physics	AM4	AM5
Radiation	Sea/ESF (1999)	RTE-RRTMG (2019)
Convection	Double Plume Convection	Improved DPC (non-equilibrium
	(DPC)	convection)
Cloud Microphysics	Rotstayn-Klein	Morrison-Gettleman-2
Boundary Layer	Lock et al (2000)	Eddy Diffusivity Mass Flux (EDMF)
Land	LM4	LM4.2++/HTiles
Orographic gravity wave	Garner et al (2005)	Updated Garner et al (2005)/GFS
drag		
Non-orographic gravity	Alexander and Dunkerton	A new CG-drag
wave drag	(<u>1999</u>)	
Stratospheric ozone	Prescribed	Linear ozone
Aerosol indirect effect	Liquid only (Ming et al. 2006)	Dust and temperature-dependent ice
		nucleation + updated liquid (Nenes)
Aerosol/chemistry	Simplified	Updated aerosol processes (emissions,
		deposition) consistent with ESM but
		chemistry is still simplified

큀

Ä

3.1

K)

哭

-

 \square

512

i Ga

K

ඊ

Long-standing model biases with examples from AM5 development

- 1) Diurnal cycle of land precipitation
- 2) Tropical Cyclones
- 3) MJO

ž

퀭

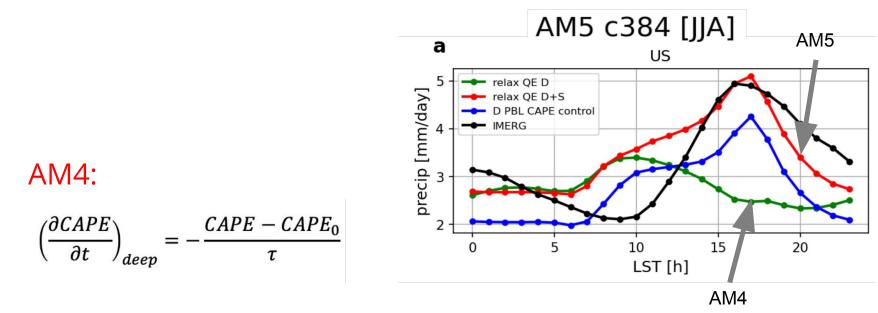
औ

x

哭

 \square

112


-

X

Č

- 4) QBO
- 5) Coastal Stratocumulus
- 6) Double ITCZ

1) Diurnal Cycle of Land Precipitation

AM5 with non-equilibrium convection (NEC):

$$\left(\frac{\partial CAPE}{\partial t}\right)_{deep} = -\frac{CAPE - CAPE_0}{\tau} - \left(\frac{\partial CAPE}{\partial t}\right)_{shall}$$

ž

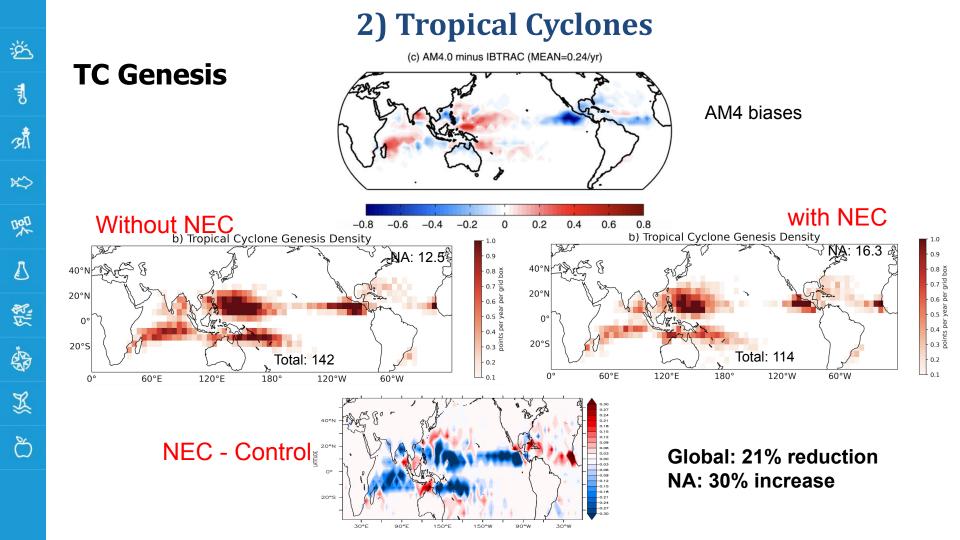
퀭

औ

x>

哭

 \square


11

·

X

ď

Zhang et al. 2024, under review

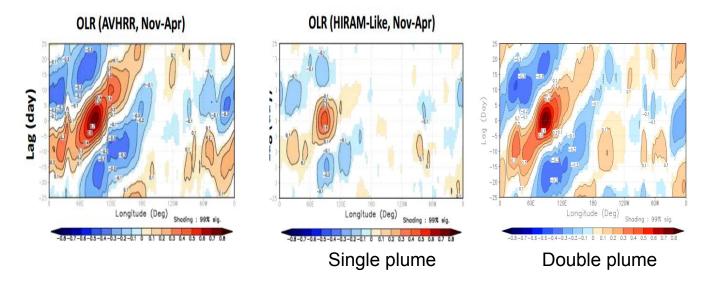
ž

퀭

. ज़ौ

K>

贶


1

11

ig the

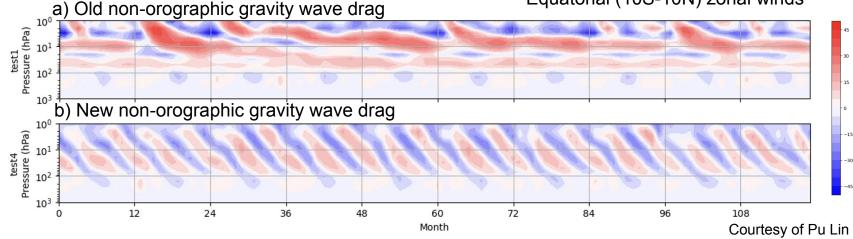
X

Č

- An additional plume is introduced to represent deep/organized convection with entrainment rate dependent on ambient RH
- Shallow cumulus moistening ahead of deep/organized convection
- Enhance LW and SW cloud radiative effect via convective microphysics
- Enhance the effect of cold pools through precipitation re-evaporation

4) QBO

Non-orographic gravity wave scheme in GFDL models


Default: AD99

- Alexander and Dunkerton 1999
- Wave source is an arbitrary constant over SH, NH and tropics.
- Simple treatment for wave propagation.

New: Beres

- Beres et al. 2004
- Wave source is determined by convective heating profile
- More sophisticated treatment for wave propagation.
- Current implementation is intended for tropical waves only. Additional scheme for extratropical waves is not activated.

Equatorial (10S-10N) zonal winds

औ

x>

ž

13

÷,

R

പ്

5) Costal Stratocumulus

TOA shortwave absorption bias

ž

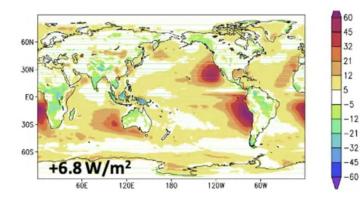
퀭

. ज़ौ

x>

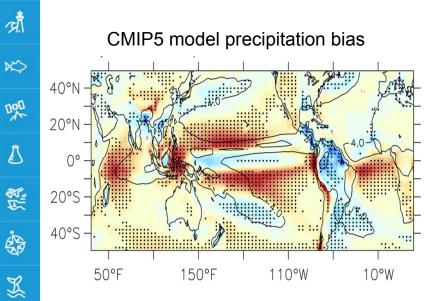
哭

1


11

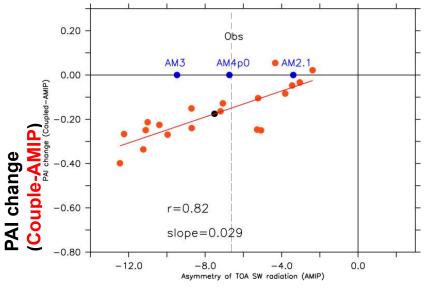
ig the

X


ඊ

Initial version of AM5 with TKE-EDMF

Courtesy of Zhihong Tan

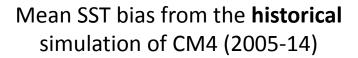

6) Double ITCZ

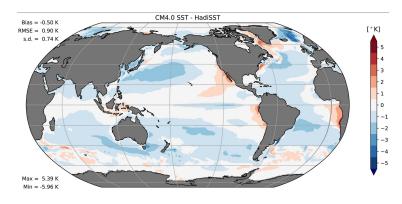
ž

큉

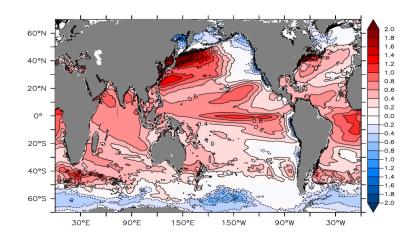
ð

Asymmetry of TOA shortwave radiation (AMIP)


Prediction of the severity of double ITCZ problem in coupled model from AMIP simulation:


 $PAI_{coupled}$ $PAI_{AMIP} = 0.021 \times F_{AMIP} - 0.05,$

Xiang et al. 2017; Zhao et al. 2018


ď

Mean SST in coupled model simulations

A prototype CM5 (25km) – CM4 (100km)

Held et al. 2019

Monitoring the coupled model simulation

Regression of DJF 200 hPa geopotential height onto Nino3 index

ž

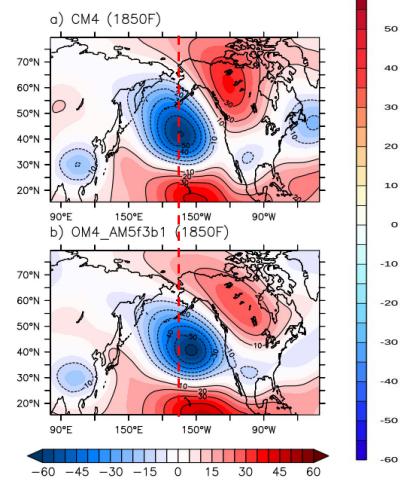
퀭

औ

x>

哭

 \square


12

-

K

r

(a) NCEP/NCAR Reanalysis (1958-2009) 70°N 60°N 50°N 40°N 30°N 20°N

60

In addition to improving simulations of mean states and variabilities,

ž

큉

A.

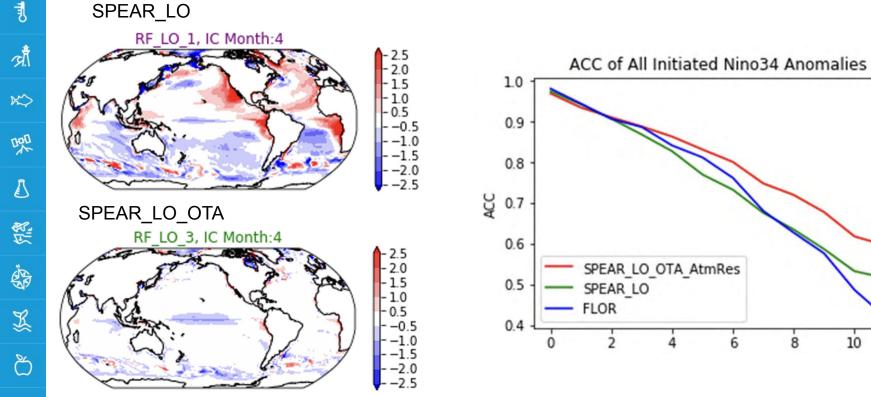
 \approx

哭

 \square

512

X


r

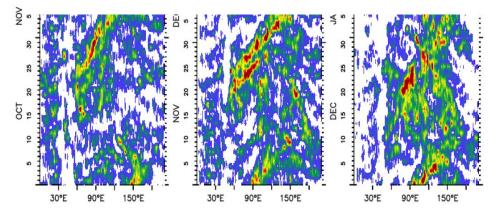
what else can we do to reduce model biases and improve forecast skills?

Reduced SST bias with Ocean Tendency Adjustment (OTA)

SPEAR_LO

ž

SST bias on August with initialization on April


Lu et al. 2020

10

8

Sensitivity of MJO prediction to initialization strategy

Observed 3 MJO events in 2011

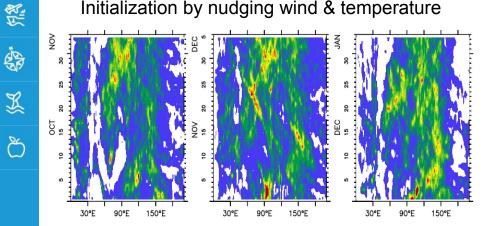
Initialization by nudging wind & temperature

ž

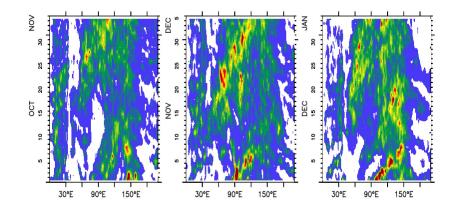
큀

. ज़ौ

x


哭

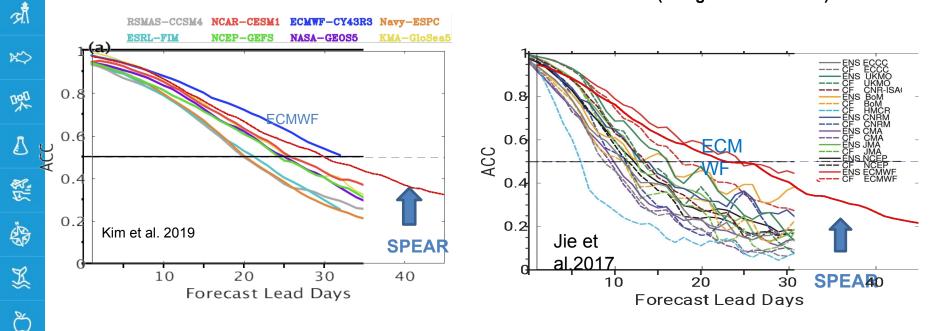
1


÷.

X

ď

Initialization by nudging wind, temperature, humidity


MJO/BSISO Predictions in SPEAR

Wintertime MJO prediction (30 days) (using Wheeler Hendon index)

ž

퀭

Summertime BSISO prediction (22 days) (using Lee et al. index)

Xiang et al. 2021, BAMS; Xiang et al. 2024, J. Clim

Summary

A model with better representations of mean climate and variabilities is essential for S2S prediction.

Physics-based development is fundamental, but tuning is always important

Thanks

- Single-column and doubly periodic simulations help understand model behaviors/biases
- Thorough validation with observations
- Regularly run coupled simulations

ž

큉

.

 \approx

哭

 \square

512

÷

X

r

. . .

SHiELD model

Impacts of GFDL Microphysics Update on the forecast skill in the first 10 days

Update from GFDL MP2 to MP3:

1) Particle size distribution

ž

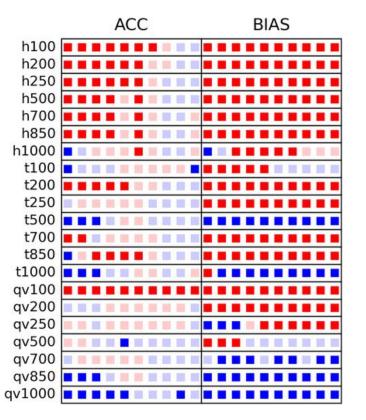
퀭

औ

K>

哭

1


12

-

K

r

- 2) Microphysics processes
- 3) Aerosol-based CDNC
- 4) Code reorganization

Scorecard

Red: improvement Blue: degradation