SUSTAINABLE RIVERS PROGRAM AT WORK IN USACE-WILMINGTON DISTRICT

Working Today to Build a Better Tomorrow

Ashley Hatchell Hydraulic Engineer Water Resources Section USACE - Wilmington District 07 Jan 2025

- Evolution of Drought Contingency Plans in USACE Wilmington District
- Do more! Sustainable Rivers Program

EVOLUTION OF USACE-SAW'S DROUGHT CONTINGENCY PLANS

B. Everett Jordan Reservoir (Jordan) as an example

Conservation Pool:

1/3 **Water Supply** to in-lake withdrawals 2/3 **Water Quality** to downstream low-flow target at Lillington, NC

EVOLUTION OF USACE-SAW'S DROUGHT CONTINGENCY PLANS

1981	Jordan Complete (normal pool in 1982)
1991	Original Drought Contingency Plan
1998	
2001	
2002	Drought Experience
2005	* field-tested alternatives with deviations
2006	
2007	
2008	Revised (Current) Drought Contingency Plan

collaborative adaptive management strategies and changes to the original plan were codeveloped by SAW water management and key local, state and federal partners

EVOLUTION OF USACE-SAW'S DROUGHT CONTINGENCY PLANS

Table 5: Drought Release Schedule																				
	Drought Level	Water Quality Storage Remaining (%)	Jordan Dam Minimum Release* (cfs)	Jordan Dam Maximum Release (cfs)	Lillington Daily Average Flow Target (cfs)	* INCREASED PROACTIVITY														
	0	>= 80	40+	600	600 +/- 50															
	1 60 - 80 40+ Lillington target 450 - 600 +/- 50																			
	2	40 - 60	40+	Lillington target	300 - 450 +/- 50	800					Record	ed and	Foreca	st Flows	at Lillir	ngton				
	3	20 - 40	40+	200+*	None**	Recorded Flow at Lillington, NC											NC			
	4	0 – 20	40+	100-200+ *	None**	700									CO		-COA 2	Forecast	Flow at Li	ington
* W	ater quality	z release plus	any required do	ownstream water sur	oply releases.	600	ť	M	m	ΛI		P	ļ			-	+			
** Lillington flow will be total of Jordan Dam release plus local inflow.											M	4	L	+		1-				
						400 E														
						300										'		-		L.
						200										-				
						100														
						0	15-May-07	20-May-07	12.Jun-07	19 Jun-07	3-Jul-07	17-Jul-07	24-Jul-07	7-Aug-07	21-Aug-07	4-Sep-07	11-Sep-07 18-Sep-07	25-Sep-07	2-004-07	16-0ct-07

NOT THE END OF THE STORY...LEARN AND ADAPT

Jordan Authorized Purposes: Flood Risk Management – Water Quality – Water Supply – Fish and Wildlife - Recreation

- CFR was listed as one of North America's top 10 most endangered rivers in 2017 by American Rivers
- Historic industrial use in the upper basin...working river
- Rapidly expanding urban development in the middle basin – Research Triangle Park
- Current pollution Chemours
- Animal feeding operations in the middle to lower basin

- USACE Locks and Dams impede diadromous fish from reaching their historic spawning grounds and slow the flow of the river, resulting in water quality issues
- USACE Jordan Dam flood operations reduce the natural variability vital for floodplain health

Sustainable Rivers Program allows us to look at opportunities to improve conditions on the CFR

Flooded animal farm after hurricane- photo courtesy of CFRW

NCWRC electrofishing, shad and striped bass below LD3 – photo courtesy TNC

blue-green algal bloom on Cape Fear – photo courtesy of NCDENR

SUSTAINABLE RIVERS PROGRAM (SRP)

Site Status - Advance - Implement - Incorporate

- SRP is a formal agreement between USACE and The Nature Conservancy
- Established in 2002
- The goal of SRP is to identify, refine, and implement environmental strategies at Corps water infrastructure
- SAW has 3 rivers in the program:
 - The Roanoke was one of the original rivers
 - The Cape Fear was added in 2016
 - The Neuse was added in 2023
- The Cape Fear and Roanoke are "Learning Watersheds" for the country

SRP IN THE ROANOKE RIVER BASIN

• John H. Kerr Reservoir Authorized Purposes Flood Risk Management – Hydropower – Water Supply Low Flow Augmentation – Recreation – Fish and Wildlife

Changed Flood Operations in 2016

- Previous ops protracted inundating releases
- "Quasi-Run of River QRR"
- Releases now more closely mimic natural inflows
- ~weekly releases = weekly inflow
- Section 216 Study \rightarrow Water Control Plan Revision

SRP's role on the Roanoke

- <u>Validate</u> operational expectations
- Share science and benefits gained from change of ops
- <u>Add</u> to climate change research
- Identify Adaptive Management opportunities through research
- collaborators doing their part also floodplain connectivity, restoration, easements, etc.

SRP IN THE NEUSE RIVER BASIN

SRP Goals at Falls for the Neuse River

- The Neuse River was added Fall of 2023
- The Corps, TNC, NCWRC, USFWS and others are working together in this first year to identify opportunities for Falls Dam to support spawning success in the Neuse River
- Stay tuned!!!

SRP IN THE CAPE FEAR RIVER BASIN INFLUENCING 135+ MILES OF RIVER WITH THE DAM

Jordan Authorized Purposes: Flood Risk Management – Water Quality – Water Supply – Fish and Wildlife - Recreation

SRP Goals at Jordan for the Cape Fear River

- Leverage Jordan operations (eFlows) to mitigate issues caused by the lock and dam structures downstream
- Fish are trying to get past Lillington to spawn. The locks and dams are barriers.
- Harmful algal blooms happen throughout the river, but are notable above locks and dams, especially LD1 (135 miles from Jordan)

SRP IN THE CAPE FEAR RIVER BASIN

The Cape Fear using an established SRP process:

ADVANCE

IMPLEMENT INCORPORATE

Working Today to Build a Better Tomorrow

5 20 25 36 3 15 June Date of 2021 July

้สามรถ,สมสรถ,ริการรถ,สมรร

40,000 Winzer: Run of River

20,0001

10,000-

60,0001

50,000-

CFR SRP STAKEHOLDER WORKSHOP ---> E-FLOW PRESCRIPTION

Late Spring Spawn

Anadromous Early \$pring Spawning

Winter Flood

Working Today to Build a Better Tomorrow

Adantic Sture

o/Juvenile Transport and Water Ouslity Puls

CFR SRP – FISH PASSAGE MARCH TO JUNE

QUESTION: What conditions support fish passage over ALL LDs to their native spawning habitats?

- Our fish can't jump need to submerge our LDs
 - Median flows ~3-5k; Need ~15k or more
- Acoustic telemetry, eDNA, and traditional electrofishing are used to study shad, striped bass, sturgeon, and flathead catfish

Results/Findings:

- Better understanding of river hydrology
- Potential to pass fish at flows lower than we thought!
- E-flow pulse events supported 100% of passage events at LD2, LD3 during 2022-2023 and improved passage at LD1 rapids

CFR SRP - WATER QUALITY: JUNE TO SEPT

QUESTION: Can releases from Jordan sufficiently mix the water column above each LD and reduce potential for harmful algal blooms?

- Blooms documented at low flows (<1800 cfs, especially below 1000 cfs) when temperatures are warm
- In extreme low-flow conditions, we consider a "pulse" if blooms are reported
- Release 1500-3000 cfs for ~36 hours (with ramp up and down) to mix the water column
- Weigh the benefit with drought risk
- Monitoring WQ parameters with real-time sensors at LD1 (surface and depth), autonomous underwater vehicle (AUV) event monitoring, remote sensing, water quality measurements added at gages, water supply utilities support

Results/Findings

- We are able to mix the water column above the LDs
- Success with less water than we anticipated (less than the eFlow recommendation from workshop) to mix the water even at LD1
- Continue to learn more about the River hydraulics mixing occurred at LD1 twice as fast as expected

Collaborators: Corps, TNC, USGS, Gybe technologies, UNC-Ch, Brunswick County Public Utilities, Middle Cape Fear River Basin Association

CFR - NEXT STEPS

- Continue to evaluate pulse effectiveness, refine pulses and protocols
- Re-engage stakeholders to share results
- Examine risk profiles
- Ultimate goal: Find a way to **incorporate** e-flows into the normal operations

Thank You

Questions?

Ashley Hatchell Wilmington District U.S. Army Corps of Engineers 69 Darlington Avenue Wilmington, NC 28403 (910) 251-4760 ashley.e.hatchell@usace.army.mil

https://www.hec.usace.army.mil/sustainablerivers/

