

Taylor Woods (tewoods@usgs.gov), Matthew Cashman, Timothy Counihan, Sean Emmons, Ken Eng, Mary Freeman, Benjamin Gressler, Joshua Hubbell, Anna Kaz, Kelly Maloney, James McKenna Jr., Jared Smith, Daniel Wieferich, Tanja Williamson, Robert Zuellig, Mike Wieczorek

discharge

image credits: Ryan Hagerty, USFWS

• CHARACTERIZED BY THE MAGNITUDE, DURATION, FREQUENCY, & TIMING OF HIGH & LOW FLOW CONDITIONS

context

• AQUATIC BIOTA

DEPEND ON NATURAL

FLOW REGIMES

agriculture irrigation

time

context

- HUMANS ALTER

 NATURAL FLOW REGIMES

 IN MANY WAYS
- MANY OF THE NATION'S

 STREAMS & RIVERS ARE
 FLOW-ALTERED

>9,000 GAGES

LOW FLOWS 1980-2014

data from Eng (2018) https://doi.org/10.5066/P9ULGVLI

context

- USGS' EXPANSIVE STREAM GAGING NETWORK
- UNDERSTANDING

 PATTERNS, TRENDS,

 & DRIVERS OF

 STREAMFLOWS

 ACROSS THE

 NATION

knowLedge gaps

- PREDICTION AT UNGAGED STREAMS
- SHORTER-TERM CONDITIONS (DYNAMIC)
- FORECASTING FUTURE FLOW ALTERATION
- VULNERABILITY OF AQUATIC
 BIOTA TO FUTURE FLOW

science objectives

PREDICT STREAMFLOW
 ALTERATION AT ALL
 STREAMS 1980-2100 BASED
 ON CLIMATE & LAND-USE
 IDENTIFY THRESHOLDS IN
 FISH RESPONSES TO FLOW
 ASSESS VULNERABILITY
 OF FISH COMMUNITIES TO
 FUTURE FLOW ALTERATION

ecoLogy team

- LOCAL EXPERTS ON MULTI-AGENCY FISH DATASETS
- INFORMED BY &
 CONNECTED WITH
 LOCAL PARTNERS
- COLLABORATE ON ECOLOGICAL FLOW VULNERABILITY ASSESSMENTS

FISH Datasets

• HARMONIZING MULT-AGENCY FISH DATASETS ACROSS REGIONS

• STANDARDIZATION OF TAXONOMY, SAMPLING METHODS, & MANY MORE!!

50,000 sampling events

> 50 agencies

450 species

> 15,000

stream reaches

Local partners

• WHAT ARE YOUR CONCERNS

ABOUT CLIMATE &

LAND-USE CHANGE EFFECTS

ON STREAM FLOWS &

FISHES?

AFFILIATION

TRIBAL GOVERNMENTAL NON-GOVERNMENTAL

SCALE

LOCAL STATE REGIONAL NATIONAL

SNOWBALLING

SNOWBALLING

Chesapeake Bay Program workgroups Interstate river commissions EPA Reg 3 Regional Tribal Organization Council

- effects of climate \(\xi\) land-use on the duration \(\xi\) magnitude of low flows
- · changes to flow regime affect persistence of coldwater refugia
- · expansion of invasives negatively affects native fishes
- flooding & sea level rise on tribal lands

Geological Survey of AL AL Dept Env Management Riverkeepers

- variation in climate \(\xi\) land-use among physiographic regions \(\xi\) longitudinal gradients
- effects of deforestation & increasing development on high & low flows
- · spawning runs are fragmented by dams & flow alteration
- rivers are drying out & dewatering more often

geospatial team

- NATIONAL HYDROGRAPHY DATASET VERSION 2 (NHDV2) CATCHMENTS & WATERSHEDS
- SUMMARIZE MASSIVE AMOUNTS OF DATA
- LEVERAGE EXISTING TOOLS/SCRIPTS INTO REPRODUCIBLE WORKFLOWS

land-use/land-cover

annual 1980-2100 4 future scenarios

climate

annual monthly 1980-2100 16 future scenarios

water balance

annual monthly 1980-2100 16 future scenarios

reservoir operations

annual monthly 1980-2020

taylor woods, sean emmons, ben gressler EESC

daniel wieferich

THAT'S A
TON OF DATA!

Temperature summaries

WARMER ENVIRONMENTS
 ACROSS ALL SEASONS
 DEGREE OF WARMING
 VARIES BY GCM & RCP
 GREATEST INCREASES

UNDER RCP 8.5

data published!

2080 - 2090 'future' (color gradients)

2000 - 2010 'historic' (black circle)

PRECIPITATION SUMMARIES

- WETTER ENVIRONMENTS
 GENERALLY
- DEGREE OF
 WETTING/DRYING VARIES
 SEASONALLY
- WETTER FALL SPRINGS, DRIER SUMMERS

data published!

2080 - 2090 'future' (color gradients)

2000 - 2010 'historic' (black circle)

Land-use Land-cover summaries

- MORE DEVELOPED, LESS
 FORESTED ENVIRONMENTS
 ACROSS ALL SCENARIOS
- AGRICULTURAL EXPANSION

 VARIES BY SCENARIO SPLIT

 BETWEEN INCREASES &

 DECREASES

2070 'future' (color gradients)

> 2005 'historic' (black circle)

hydroLogy team

- IDENTIFY PREDICTOR **VARIABLES FOR FLOW MODELS**
- PREDICT FLOW METRICS AT GAGED & UNGAGED REACHES 1980-NOW
- FORECAST FLOW **METRICS NOW-2100**

ken eng WMA

jared smith WMA

tanja williamson OH-KY-IN WSC

FLOW MODELS

- MACHINE LEARNING
 MODELS TO PREDICT
 MONTHLY FLOWS 1980-2020
 AT ALL NHDV2 REACHES
- OUTPUTS ARE MONTHLY
 MINIMUM, MEAN, MAXIMUM
 FLOW
- FORECAST MONTHLY FLOWS
 WITH FUTURE SCENARIOS
 2021-2100

FLOW MODELS

- AGGREGATE MONTHLY
 FLOWS TO CHARACTERIZE
 FLOW REGIME COMPONENTS
- MONTHLY OUTPUT ALLOWS
 FOR DYNAMIC, RATHER THAN
 STATIC LONG-TERM, FLOW
 METRICS

NEXT STEPS

- IDENTIFY THRESHOLDS IN ECOLOGICAL RESPONSES TO FLOW
- PAIR THRESHOLDS WITH FLOW FORECASTS TO ASSESS FUTURE **VULNERABILITY**

ECOSYSTEMS MISSION AREALarge Landscape COORDINATORS

PROJECT TEAM

Anna Kaz, Sean Emmons, Ken Eng, Jared Smith, Matt Cashman, Timothy Counihan, Mary Freeman, Benjamin Gressler, Joshua Hubbell, Kelly Maloney, James McKenna Jr., Daniel Wieferich, Tanja Williamson, Robert Zuellig, Mike Wieczorek

partners

Confederated Tribes of the Umatila Indian Reservation, CO Parks & Wildlife, Great Lakes Indian Fish & Wildlife Commission, NY Department of Environmental Conservation, US Fish & Wildlife Service, Chesapeake Bay Program Working Groups, Interstate Commission for the Potomac River Basin, Susquehanna River Basin Commission, EPA Region 3 Regional Tribal Organization Committee, Geological Survey of AL, AL Department of Environmental Management, Black Warrior Riverkeeper